Effect of UV Laser Radiation on “Positive Regulation of Telomere Maintenance” in Saccharomyces cerevisiae Effect of UV Laser on “Positive Regulation of Telomere Maintenance
Journal of Lasers in Medical Sciences,
Vol. 12 (2021),
13 Bahman 2021
,
Page e87
Abstract
Introduction: Excessive exposure to ultraviolet (UV) radiation may cause a variety of skin cancers and damage to the eye lens. The assessment of different aspects of UV damage has attracted researchers’ interest. UV radiation to simple biological models such as Saccharomyces cerevisiae of yeast family could help to find out different molecular changes resulting from radiation. The assessment and network analysis of gene expression data about yeast cells radiated by the UV laser was the aim of this study.
Methods: The gene expression profiles of S. cerevisiae samples in the presence of the UV laser at 30 seconds radiation and 15 minutes’ post-radiation time are compared with the control profiles. The significantly expressed genes interacted and the central nodes and related biological terms were identified.
Results: The main connected component of the network including 427 nodes was analyzed and 11 central differentially expressed genes (DEGs) were determined. RPN11, UBI4, HSP82, and HSC82 as critical DEGs and “positive regulation of telomere maintenance” as a related biological term was introduced.
Conclusion: The finding has provided a new perspective on laser application in the rejuvenation process. It seems that the laser can be used as a suitable agent against the aging process which is a limiting factor in human life.
- UV laser; Telomere; Saccharomyces cerevisiae; Gene; Data analysis
How to Cite
References
D'Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV radiation and the skin. Int J Mol Sci. 2013;14(6):12222-12248. doi:10.3390/ijms140612222
Armstrong BK, Kricker A. The epidemiology of UV induced skin cancer. J Photochem Photobiol B. 2001;63(1-3):8-18. doi: 10.1016/s1011-1344(01)00198-1.
Kaidzu S, Sugihara K, Sasaki M, Nishiaki A, Ohashi H, Igarashi T, et al. Re-Evaluation of Rat Corneal Damage by Short-Wavelength UV Revealed Extremely Less Hazardous Property of Far-UV-C†. Photochem Photobiol. 2021;97(3):505-516. doi: 10.1111/php.13419.
Basu AK. DNA Damage, Mutagenesis and Cancer. Int J Mol Sci. 2018 23;19(4):970. doi: 10.3390/ijms19040970.
de Laat A, van Tilburg M, van der Leun JC, van Vloten WA, de Gruijl FR. Cell cycle kinetics following UVA irradiation in comparison to UVB and UVC irradiation. Photochem Photobiol. 1996;63(4):492-7. doi: 10.1111/j.1751-1097.1996.tb03075.x.
Holick MF. Sunlight, UV-radiation, vitamin D and skin cancer: how much sunlight do we need? Adv Exp Med Biol. 2008;624:1-15. doi: 10.1007/978-0-387-77574-6_1.
Langton AK, Sherratt MJ, Griffiths CE, Watson RE. A new wrinkle on old skin: the role of elastic fibres in skin ageing. Int J Cosmet Sci. 2010;32(5):330-9. doi: 10.1111/j.1468-2494.2010.00574.x.
Liu-Smith F, Jia J, Zheng Y. UV-Induced Molecular Signaling Differences in Melanoma and Non-melanoma Skin Cancer. Adv Exp Med Biol. 2017;996:27-40. doi: 10.1007/978-3-319-56017-5_3.
Chen H, Weng QY, Fisher DE. UV signaling pathways within the skin. J Invest Dermatol. 2014;134(8):2080-2085. doi: 10.1038/jid.2014.161.
Suzuki I, Cone RD, Im S, Nordlund J, Abdel-Malek ZA. Binding of melanotropic hormones to the melanocortin receptor MC1R on human melanocytes stimulates proliferation and melanogenesis. Endocrinology. 1996;137(5):1627-1633. doi:10.1210/endo.137.5.8612494
Suzuki I, Cone RD, Im S, Nordlund J, Abdel-Malek ZA. Binding of melanotropic hormones to the melanocortin receptor MC1R on human melanocytes stimulates proliferation and melanogenesis. Endocrinology. 1996;137(5):1627-33. doi: 10.1210/endo.137.5.8612494.
Narayanan DL, Saladi RN, Fox JL. Ultraviolet radiation and skin cancer. Int J Dermatol. 2010;49(9):978-86. doi: 10.1111/j.1365-4632.2010.04474.x.
Berwick M, Wiggins C. The current epidemiology of cutaneous malignant melanoma. Front Biosci. 2006;11:1244-54. doi: 10.2741/1877.
Ling G, Persson A, Berne B, Uhlén M, Lundeberg J, Ponten F. Persistent p53 mutations in single cells from normal human skin. Am J Pathol. 2001;159(4):1247-53. doi: 10.1016/S0002-9440(10)62511-4.
Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat J-P, et al. A landscape of driver mutations in melanoma. Cell. 2012;150(2):251-63. doi: 10.1016/j.cell.2012.06.024.
Rees JL. The genetics of sun sensitivity in humans. Am J Hum Genet. 2004;75(5):739-51. doi: 10.1086/425285.
Meyskens FL Jr, Farmer P, Fruehauf JP. Redox regulation in human melanocytes and melanoma. Pigment Cell Res. 2001;14(3):148-54. doi: 10.1034/j.1600-0749.2001.140303.x.
Schulz I, Mahler HC, Boiteux S, Epe B. Oxidative DNA base damage induced by singlet oxygen and photosensitization: recognition by repair endonucleases and mutagenicity. Mutat Res. 2000;461(2):145-56. doi: 10.1016/s0921-8777(00)00049-5.
Hoeijmakers JH. DNA damage, aging, and cancer. N Engl J Med. 2009 8;361(15):1475-85. doi: 10.1056/NEJMra0804615.
Nouspikel T. DNA repair in mammalian cells : Nucleotide excision repair: variations on versatility. Cell Mol Life Sci. 2009;66(6):994-1009. doi: 10.1007/s00018-009-8737-y.
Foury F. Human genetic diseases: a cross-talk between man and yeast. Gene. 1997;195(1):1-10. doi: 10.1016/s0378-1119(97)00140-6.
Schild D, Brake AJ, Kiefer MC, Young D, Barr PJ. Cloning of three human multifunctional de novo purine biosynthetic genes by functional complementation of yeast mutations. Proc Natl Acad Sci U S A. 1990;87(8):2916-20. doi: 10.1073/pnas.87.8.2916.
Marx S, Vogelstein B, Kinzler K. Genetic Basis of Human Cancer. Eds B Vogelstein & KW Kinzler New York: Mc Graw Hill. 1998 :489-506.
Said MR, Begley TJ, Oppenheim AV, Lauffenburger DA, Samson LD. Global network analysis of phenotypic effects: protein networks and toxicity modulation in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences (PNAS). 2004;101(52):18006-11. doi:10.1073/pnas.0405996101
Thomas S, Bonchev D. A survey of current software for network analysis in molecular biology. Hum Genomics. 2010;4(5):353-60. doi: 10.1186/1479-7364-4-5-353.
Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998;396(6712):643-9. doi: 10.1038/25292.
McClintock B. The Fusion of Broken Ends of Chromosomes Following Nuclear Fusion. Proc Natl Acad Sci U S A. 1942;28(11):458-63. doi: 10.1073/pnas.28.11.458.
Cheng L, Watt R, Piper PW. Polyubiquitin gene expression contributes to oxidative stress resistance in respiratory yeast (Saccharomyces cerevisiae). Mol Gen Genet. 1994;243(3):358-62. doi: 10.1007/BF00301072.
Zhao W, Zhou T, Zheng H-Z, Qiu K-P, Cui H-J, Yu H, et al. Yeast polyubiquitin gene UBI4 deficiency leads to early induction of apoptosis and shortened replicative lifespan. Cell Stress Chaperones. 2018;23(4):527-537. doi: 10.1007/s12192-017-0860-3.
Grandin N, Charbonneau M. Hsp90 levels affect telomere length in yeast. Mol Genet Genomics. 2001;265(1):126-34. doi: 10.1007/s004380000398.
- Abstract Viewed: 373 times
- PDF Downloaded: 278 times