The The Role of Low-Level Laser Therapy in the Treatment of Multiple Sclerosis: A Review Study Low-Level Laser Therapy and Multiple Sclerosis
Journal of Lasers in Medical Sciences,
Vol. 12 (2021),
13 February 2021
,
Page e88
Abstract
Introduction: Multiple sclerosis (MS) is an autoimmune disease. Inflammatory cells, cytokines, and chemokines play a major role in the pathogenesis of the disease. Low-level laser therapy (LLLT) as a photobiostimulation approach could affect a wide range of cellular responses. LLLT inhibits the inflammatory signaling pathway, improves cell viability, inhibits apoptosis, modulates immune responses, and induces the production of growth factors.
Methods: In this review, we discuss the effect of LLLT on cellular responses and its application in the treatment of MS. Such keywords as “low-level laser therapy”, “photobiomodulation” and “multiple sclerosis” were used to find studies related to laser therapy in MS in Google scholar, PubMed, and Medline databases.
Results: LLLT reduced the inflammatory immune cells and mediators. It also enhanced the regeneration of neurons.
Conclusion: Investigations showed that besides current treatment strategies, LLLT could be a promising therapeutic approach for the treatment of MS.
- Low-level laser therapy (LLLT), Multiple sclerosis (MS), Photobiomodulation, Laser therapy, Autoimmune disease
How to Cite
References
Dargahi N, Katsara M, Tselios T, Androutsou M-E, De Courten M, Matsoukas J, et al. Multiple Sclerosis: Immunopathology and Treatment Update. Brain Sci. 2017;7(7):78. doi:10.3390/brainsci7070078
Grigoriadis N, Van Pesch V. A basic overview of multiple sclerosis immunopathology. Eur J Neurol. 2015;22 Suppl 2:3-13. doi:10.1111/ene.12798
Lassmann H, Brück W, Lucchinetti CF. The immunopathology of multiple sclerosis: an overview. Brain Pathol. 2007;17(2):210-218. doi:10.1111/j.1750-3639.2007.00064.x
Hashemi SM, Hassan ZM, Hossein-Khannazer N, Pourfathollah AA, Soudi S. Investigating the route of administration and efficacy of adipose tissue-derived mesenchymal stem cells and conditioned medium in type 1 diabetic mice. Inflammopharmacology. 2020;28(2):585-601. doi:10.1007/s10787-019-00661-x
Hossein‐khannazer N, Shabani S, Farokhfar M, Azizi G, Asarzadegan F, Safarpour Lima B, et al. Pivotal cytokines and their transcription factors are the targets of guluronic acid (G2013) for inhibiting the immunopathogenesis process of multiple sclerosis. Drug Dev Res. 2020;81(4):511-516. doi:10.1002/ddr.21645
Huang WJ, Chen WW, Zhang X. Multiple sclerosis: Pathology, diagnosis and treatments. Exp Ther Med. 2017;13(6):3163-3166. doi:10.3892/etm.2017.4410
Torkildsen Ø, Myhr KM, Bø L. Disease-modifying treatments for multiple sclerosis - a review of approved medications. Eur J Neurol. 2016;23 Suppl 1(Suppl 1):18-27. doi:10.1111/ene.12883
Chen WR, Liu H, Ritchey JW, Bartels KE, Lucroy MD, Nordquist RE. Effect of different components of laser immunotherapy in treatment of metastatic tumors in rats. Cancer Res. 2002;62(15):4295-4299.
Hemmer B, Archelos JJ, Hartung H-P. New concepts in the immunopathogenesis of multiple sclerosis. Nat Rev Neurosci. 2002;3(4):291-301. doi:10.1038/nrn784
Comabella M, Khoury SJ. Clin Immunol. 2012;142(1):2-8. doi:10.1016/j.clim.2011.03.004
Hossein‐Khannazer N, Zian Z, Bakkach J, Kamali AN, Hosseinzadeh R, Anka AU, et al. Features and roles of T helper 22 cells in immunological diseases and malignancies. Scand J Immunol. 2021; 93:e13030. doi:10.1111/sji.13030
Prat E, Martin R. The immunopathogenesis of multiple sclerosis. J Rehabil Res Dev. 2002;39(2):187-199.
Yadav SK, Mindur JE, Ito K, Dhib-Jalbut S. Curr Opin Neurol. 2015;28(3):206-219. doi:10.1097/WCO.0000000000000205
Haas J, Fritzsching B, Trübswetter P, Korporal M, Milkova L, Fritz B, et al. Prevalence of newly generated naive regulatory T cells (Treg) is critical for Treg suppressive function and determines Treg dysfunction in multiple sclerosis. J Immunol. 2007;179(2):1322-1330. doi:10.4049/jimmunol.179.2.1322
Venken K, Hellings N, Broekmans T, Hensen K, Rummens J-L, Stinissen P. Natural naive CD4+ CD25+ CD127low regulatory T cell (Treg) development and function are disturbed in multiple sclerosis patients: recovery of memory Treg homeostasis during disease progression. J Immunol. 2008;180(9):6411-6420. doi:10.4049/jimmunol.180.9.6411
Abrahamse H. Regenerative medicine, stem cells, and low-level laser therapy: future directives. Photomed Laser Surg. 2012;30(12):681-682. doi:10.1089/pho.2012.9881
Chung H, Dai T, Sharma SK, Huang Y-Y, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 2012;40(2):516-533. doi:10.1007/s10439-011-0454-7
Strübing I, Gröschel M, Schwitzer S, Ernst A, Fröhlich F, Jiang D, et al. Neuroprotective Effect of Near-Infrared Light in an Animal Model of CI Surgery. Audiol Neurootol. 2021;26(2):95-101. doi:10.1159/000508619
Xu Z, Guo X, Yang Y, Tucker D, Lu Y, Xin N, et al. Low-level laser irradiation improves depression-like behaviors in mice. Mol Neurobiol. 2017;54(6):4551-4559. doi:10.1007/s12035-016-9983-2
Oron A, Oron U. Low-level laser therapy to the bone marrow ameliorates neurodegenerative disease progression in a mouse model of Alzheimer's disease: a minireview. Photomed Laser Surg. 2016;34(12):627-630. doi:10.1089/pho.2015.4072
Mokmeli S, Vetrici M. Low-level laser therapy as a modality to attenuate cytokine storm at multiple levels, enhance recovery, and reduce the use of ventilators in COVID-19. Can J Respir Ther. 2020;56:25-31.doi:10.29390/cjrt-2020-015
Yun Y-C, Jang D, Yoon S-B, Kim D, Choi D-H, Kwon O, et al. Laser acupuncture exerts neuroprotective effects via regulation of Creb, Bdnf, Bcl-2, and Bax gene expressions in the hippocampus. Evid Based Complement Alternat Med. 2017;2017:7181637. doi:10.1155/2017/7181637
Zhang C, Hao T, Chen P, Liang J, Wang C, Kang H, et al. Effect of low-level laser irradiation on the proliferation of myoblasts—the skeletal muscle precursor cells: an experimental in vitro study. Laser Phys. 2011;21(12):2122-7. doi:10.1134/S1054660X11210328
Gao X, Xing D. Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci. 2009;16(1):4. Published 2009 Jan 12. doi:10.1186/1423-0127-16-4
Torres S, De Sanctis J, de Briceno L, Hernandez N, Finol H. Inflammation and nitric oxide production in skeletal muscle of type 2 diabetic patients. J Endocrinol. 2004;181(3):419-427. doi:10.1677/joe.0.1810419
Aimbire F, Santos F, Albertini R, Castro-Faria-Neto H, Mittmann J, Pacheco-Soares C. Low-level laser therapy decreases levels of lung neutrophils anti-apoptotic factors by a NF-κB dependent mechanism. Int Immunopharmacol. 2008;8(4):603-605. doi:10.1016/j.intimp.2007.12.007
Avni D, Levkovitz S, Maltz L, Oron U. Protection of skeletal muscles from ischemic injury: low-level laser therapy increases antioxidant activity. Photomed Laser Surg. 2005;23(3):273-277. doi:10.1089/pho.2005.23.273
Shefer G, Partridge TA, Heslop L, Gross JG, Oron U, Halevy O. Low-energy laser irradiation promotes the survival and cell cycle entry of skeletal muscle satellite cells. J Cell Sci. 2002;115(Pt 7):1461-1469.
Rizzi CF, Mauriz JL, Freitas Corrêa DS, Moreira AJ, Zettler CG, Filippin LI, et al. Effects of low‐level laser therapy (LLLT) on the nuclear factor (NF)‐κB signaling pathway in traumatized muscle. Lasers Surg Med. 2006;38(7):704-713. doi:10.1002/lsm.20371
Huang YY, Nagata K, Tedford CE, McCarthy T, Hamblin MR. Low‐level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro. J Biophotonics. 2013;6(10):829-838. doi:10.1002/jbio.201200157
Ojaghi R, Sohanaki H, Ghasemi T, Keshavarz F, Yousefifard M, Sadeghipour H. Role of low-intensity laser therapy on naloxone-precipitated morphine withdrawal signs in mice: is nitric oxide a possible candidate mediator? Lasers Med Sci. 2014;29(5):1655-1659. doi:10.1007/s10103-014-1530-7
Byrnes KR, Wu X, Waynant RW, Ilev IK, Anders JJ. Low power laser irradiation alters gene expression of olfactory ensheathing cells in vitro. Lasers Surg Med. 2005;37(2):161-171. doi:10.1002/lsm.20202
Yu W, Naim JO, Lanzafame RJ. The effect of laser irradiation on the release of bFGF from 3T3 fibroblasts. Photochem Photobiol. 1994;59(2):167-170. doi:10.1111/j.1751-1097.1994.tb05017.x
Leung MC, Lo SC, Siu FK, So KF. Treatment of experimentally induced transient cerebral ischemia with low energy laser inhibits nitric oxide synthase activity and up‐regulates the expression of transforming growth factor‐beta 1. Lasers Surg Med. 2002;31(4):283-288. doi:10.1002/lsm.10096
Thunshelle C, Hamblin MR. Transcranial low-level laser (light) therapy for brain injury. Photomed Laser Surg. 2016;34(12):587-598. doi:10.1089/pho.2015.4051
Hashmi JT, Huang YY, Osmani BZ, Sharma SK, Naeser MA, Hamblin MR. PM R. 2010;2(12 Suppl 2):S292-S305. doi:10.1016/j.pmrj.2010.10.013
Mansouri V, Razzaghi M, Rostami-Nejad M, Rezaei-Tavirani M, Heidari MH, Safari S, et al. Neuroprotective properties of photobiomodulation in retinal regeneration in rats: perspectives from interaction levels. J Lasers Med Sci. 2020;11(3):280-286. doi:10.34172/jlms.2020.47
Blivet G, Meunier J, Roman FJ, Touchon J. Neuroprotective effect of a new photobiomodulation technique against Aβ25-35 peptide-induced toxicity in mice: Novel hypothesis for therapeutic approach of Alzheimer's disease suggested. Alzheimers Dement (N Y). 2018;4:54-63. doi:10.1016/j.trci.2017.12.003
Rojas JC, Lee J, John JM, Gonzalez-Lima F. Neuroprotective effects of near-infrared light in an in vivo model of mitochondrial optic neuropathy. J Neurosci. 2008;28(50):13511-13521. doi:10.1523/JNEUROSCI.3457-08.2008
Meng C, He Z, Xing D. Low-level laser therapy rescues dendrite atrophy via upregulating BDNF expression: implications for Alzheimer's disease. J Neurosci. 2013;33(33):13505-13517. doi:10.1523/JNEUROSCI.0918-13.2013
Guerriero F, Sgarlata C, Francis M, Maurizi N, Faragli A, Perna S, et al. Neuroinflammation, immune system and Alzheimer disease: searching for the missing link. Aging Clin Exp Res. 2017;29(5):821-831. doi:10.1007/s40520-016-0637-z
Lapchak PA, De Taboada L. Transcranial near infrared laser treatment (NILT) increases cortical adenosine-5′-triphosphate (ATP) content following embolic strokes in rabbits. Brain Res. 2010;1306:100-5. doi:10.1016/j.brainres.2009.10.022
Oron A, Oron U, Chen J, Eilam A, Zhang C, Sadeh M, et al. Low-level laser therapy applied transcranially to rats after induction of stroke significantly reduces long-term neurological deficits. Stroke. 2006;37(10):2620-2624. doi:10.1161/01.STR.0000242775.14642.b8
Sarveazad A, Janzadeh A, Taheripak G, Dameni S, Yousefifard M, Nasirinezhad F. Co-administration of human adipose-derived stem cells and low-level laser to alleviate neuropathic pain after experimental spinal cord injury. Stem Cell Res Ther. 2019;10(1):1-15. doi: 10.1186/s13287-019-1269-y.
Kim J, Kim E-H, Lee K, Kim B, Kim Y, Na SH, et al. Low-level laser irradiation improves motor recovery after contusive spinal cord injury in rats. Tissue Eng Regen Med. 2017;14(1):57-64. doi:10.1007/s13770-016-0003-4
Rochkind S. Stimulation effect of laser energy on the regeneration of traumatically injured peripheral nerves. Morphogen Regen. 1978;83:25-7.
Rochkind S, Nissan M, Alon M, Shamir M, Salame K. Effects of laser irradiation on the spinal cord for the regeneration of crushed peripheral nerve in rats. Lasers Surg Med. 2001;28(3):216-219. doi:10.1002/lsm.1041
Rochkind S, Barrnea L, Razon N, Bartal A, Schwartz M. Stimulatory effect of He-Ne low dose laser on injured sciatic nerves of rats. Neurosurgery. 1987;20(6):843-847. doi:10.1227/00006123-198706000-00004
Janzadeh A, Sarveazad A, Yousefifard M, Dameni S, Samani FS, Mokhtarian K, et al. Combine effect of Chondroitinase ABC and low level laser (660 nm) on spinal cord injury model in adult male rats. Neuropeptides. 2017;65:90-99. doi:10.1016/j.npep.2017.06.002
McGeer E, McGeer P. Neurotoxins as tools in neurobiology. Int Rev Neurobiol. 1981;22:173-204.
Yu T, Yu H, Zhang B, Wang D, Li B, Zhu J, et al. Promising neuroprotective function for M2 microglia in Kainic Acid-induced neurotoxicity via the down-regulation of NF-κB and caspase 3 signaling pathways. Neuroscience. 2019;406:86-96. doi:10.1016/j.neuroscience.2019.03.002
Janzadeh A, Nasirinezhad F, Masoumipoor M, Jameie SB. Photobiomodulation therapy reduces apoptotic factors and increases glutathione levels in a neuropathic pain model. Lasers Med Sci. 2016;31(9):1863-1869. doi:10.1007/s10103-016-2062-0
Huang YY, Nagata K, Tedford CE, Hamblin* MR. Low‐level laser therapy (810 nm) protects primary cortical neurons against excitotoxicity in vitro. J Biophotonics. 2014;7(8):656-664. doi:10.1002/jbio.201300125
Rykała J, Szychta P, Witmanowski H. Physical and biological bases of laser phototherapy. Advances in Dermatology & Allergology/Postepy Dermatologii i Alergologii. 2012;29(5): 378-383.
Lan C-CE, Wu S-B, Wu C-S, Shen Y-C, Chiang T-Y, Wei Y-H, et al. Induction of primitive pigment cell differentiation by visible light (helium–neon laser): a photoacceptor-specific response not replicable by UVB irradiation. J Mol Med (Berl). 2012;90(3):321-330. doi:10.1007/s00109-011-0822-7
Liang J, Liu L, Xing D. Photobiomodulation by low-power laser irradiation attenuates Aβ-induced cell apoptosis through the Akt/GSK3β/β-catenin pathway. Free Radic Biol Med. 2012;53(7):1459-1467. doi:10.1016/j.freeradbiomed.2012.08.003
Lavi R, Shainberg A, Friedmann H, Shneyvays V, Rickover O, Eichler M, et al. Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells. J Biol Chem. 2003;278(42):40917-40922. doi:10.1074/jbc.M303034200
Gonçalves ED, Souza PS, Lieberknecht V, Fidelis GS, Barbosa RI, Silveira PC, et al. Low-level laser therapy ameliorates disease progression in a mouse model of multiple sclerosis. Autoimmunity. 2016;49(2):132-142. doi:10.3109/08916934.2015.1124425
Acar G, Idiman F, Idiman E, Kırkalı G, Çakmakçı H, Özakbaş S. Nitric oxide as an activity marker in multiple sclerosis. J Neurol. 2003;250(5):588-592. doi:10.1007/s00415-003-1041-0
Giovannoni G, Heales SJ, Land J, Thompson E. The potential role of nitric oxide in multiple sclerosis. Mult Scler. 1998;4(3):212-216. doi:10.1177/135245859800400323
Kubsik A, Klimkiewicz R, Janczewska K, Klimkiewicz P, Jankowska A, Woldańska-Okońska M. Application of laser radiation and magnetostimulation in therapy of patients with multiple sclerosis. NeuroRehabilitation. 2016;38(2):183-190. doi:10.3233/NRE-161309
Silva T, Fragoso YD, Destro Rodrigues MFS, Gomes AO, da Silva FC, Andreo L, et al. Effects of photobiomodulation on interleukin-10 and nitrites in individuals with relapsing-remitting multiple sclerosis–Randomized clinical trial. PLoS One. 2020;15(4):e0230551. doi:10.1371/journal.pone.0230551
Essa SA, Mostafa YM, Fathi SM, Elhafez HM, Ahmed AF, El Fayoumy N. Could Phototherapy Reverse Visual Deficits in Patients with Relapsing-Remitting Multiple Sclerosis? J Med Sci Clin Res. 2015;3(5):5479-94.
Uccelli A, Laroni A, Freedman MS. Mesenchymal stem cells as treatment for MS–progress to date. Mult Scler. 2013;19(5):515-519. doi:10.1177/1352458512464686
Xiao J, Yang R, Biswas S, Qin X, Zhang M, Deng W. Mesenchymal stem cells and induced pluripotent stem cells as therapies for multiple sclerosis. Int J Mol Sci. 2015;16(5):9283-9302. Published 2015 Apr 24. doi:10.3390/ijms16059283
Hossein-Khannazer N, Hashemi SM, Namaki S, Ghanbarian H, Sattari M, Khojasteh A. Study of the immunomodulatory effects of osteogenic differentiated human dental pulp stem cells. Life Sci. 2019;216:111-118. doi:10.1016/j.lfs.2018.11.040
Gharibi T, Ahmadi M, Seyfizadeh N, Jadidi-Niaragh F, Yousefi M. Immunomodulatory characteristics of mesenchymal stem cells and their role in the treatment of multiple sclerosis. Cell Immunol. 2015;293(2):113-121. doi:10.1016/j.cellimm.2015.01.002
Mohyeddin Bonab M, Ali Sahraian M, Aghsaie A, Ahmadi Karvigh S, Massoud Hosseinian S, Nikbin B, et al. Autologous mesenchymal stem cell therapy in progressive multiple sclerosis: an open label study. Curr Stem Cell Res Ther. 2012;7(6):407-414. doi:10.2174/157488812804484648
Meamar R, Nematollahi S, Dehghani L, Mirmosayyeb O, Shayegannejad V, Basiri K, et al. The role of stem cell therapy in multiple sclerosis: An overview of the current status of the clinical studies. Adv Biomed Res. 2016;5:46. doi:10.4103/2277-9175.178791
Abdallah AN, Shamaa AA, El-Tookhy OS. Evaluation of treatment of experimentally induced canine model of multiple sclerosis using laser activated non-expanded adipose derived stem cells. Res Vet Sci. 2019;125:71-81. doi:10.1016/j.rvsc.2019.05.016
Mvula B, Moore T, Abrahamse H. Effect of low-level laser irradiation and epidermal growth factor on adult human adipose-derived stem cells. Lasers Med Sci. 2010;25(1):33-39. doi:10.1007/s10103-008-0636-1
- Abstract Viewed: 1071 times
- PDF Downloaded: 590 times