Developing a New Dimension for Fourier Domain Optical Coherence Tomography Images by Simultaneous Measurement of the Refractive Index and Thickness True Physical Thickness Optical Coherence Tomography
Journal of Lasers in Medical Sciences,
Vol. 12 (2021),
13 Bahman 2021
,
Page e89
Abstract
Introduction: Fourier domain Optical coherence tomography (OCT) is a widely used highresolution optical imaging technique. It is useful for various applications in medical imaging, such as ophthalmology (e.g. retinal imaging for diagnosing complications like glaucoma or macular degeneration), dermatology, oncology, and cardiology. The ability to noninvasively measure both the refractive index and thickness of biological tissues could have various medical applications and enable earlier disease detection. For example, observing changes in the refractive index can help distinguish between tissues with normal or abnormal function.
Methods: In this study, the theoretical framework for simultaneous measurement of the refractive index and physical thickness of multilayer systems is proposed and tested for two different samples, each having three layers, a glass/NaCl solution/glass sample and a glass/sugar solution/glass sample. The whole signal processing procedure and the experimental setup are described.
Results: The refractive index and thickness of saltwater and sugar water samples in the Fourierdomain OCT (FD-OCT) system were obtained. The resulting data were compared with reference measurements and showed a deviation of about 1% for the samples.
Conclusion: We tested the proposed framework for the simultaneous extraction of the refractive index and thickness of multilayer systems of salt water and sugar water from its FD-OCT data. We showed that the measured parameters were in agreement with reference amounts.
- Optical coherence tomography
- Refractive index
- Fourier domain OCT
- Medical imaging
- Ophthalmology
How to Cite
References
Fercher AF, Drexler W, Hitzenberger CK, Lasser T. Optical coherence tomography - principles and applications. Rep Prog Phys. 2003;66(2):239-303. doi:10.1088/0034-4885/66/2/204
Lu Y, Li Z, Zhang X, Ming B, Jia J, Wang R, et al. Retinal nerve fiber layer structure abnormalities in early Alzheimer’s disease: evidence in optical coherence tomography. Neurosci Lett. 2010;480(1):69-72. doi: 10.1016/j.neulet.2010.06.006
Akil H, Al-Sheikh M, Falavarjani KG, Francis B, Chopra V. Choroidal thickness and structural glaucoma parameters in glaucomatous, preperimetric glaucomatous, and healthy eyes using swept-source OCT. Eur J Ophthalmol. 2017;27(5):548-554. doi:10.5301/ejo.5000926
Ghasemi Falavarjani K, Iafe NA, Hubschman J-P, Tsui I, Sadda SR, Sarraf D. Optical coherence tomography angiography analysis of the foveal avascular zone and macular vessel density after anti-VEGF therapy in eyes with diabetic macular edema and retinal vein occlusion. Invest Ophthalmol Vis Sci. 2017;58(1):30-34. doi:10.1167/iovs.16-20579
Soltan Sanjari M, Parvaresh MM, Maleki A, Ghasemi Falavarjani KH, Bakhtiari P. Correlation between nerve fiber layer thickness on OCT and visual field in patients with optic atrophy. Bina J Ophthalm. 2008;13(3):331-335.
de Boer JF, Hitzenberger CK, Yasuno Y. Polarization sensitive optical coherence tomography - a review [Invited]. Biomed Opt Express. 2017;8(3):1838-1873. doi:10.1364/BOE.8.001838
Kolenderska S, Vanholsbeeck F, Kolenderski P. Quantum Optical Coherence Tomography using two-photon joint spectrum detection. Opt Express. 2020 ;28(20):29576-89. doi:10.1364/oe.399913
Jin J, Kim JW, Kang C-S, Kim J-A, Eom TB. Thickness and refractive index measurement of a silicon wafer based on an optical comb. Opt Express. 2010;18(17):18339. doi:10.1364/oe.18.018339
Na J, Choi HY, Choi ES, Lee C, Lee BH. Self-referenced spectral interferometry for simultaneous measurements of thickness and refractive index. Appl Opt. 2009;48(13):2461-2467. doi:10.1364/ao.48.002461
Leitgeb R, Hitzenberger C, Fercher A. Performance of fourier domain vs. time domain optical coherence tomography. Opt Express. 2003;11(8):889-894. doi:10.1364/oe.11.000889
Yun S, Tearney G, de Boer J, Iftimia N, Bouma B. High-speed optical frequency-domain imaging. Opt Express. 2003;11(22):2953-2963. doi:10.1364/oe.11.002953
Tahara S, Bezerra HG, Baibars M, Kyono H, Wang W, Pokras S, et al. In vitro validation of new Fourier-domain optical coherence tomography. EuroIntervention. 2011;6(7):875-882. doi:10.4244/EIJV6I7A149
Bouma BE, Yun S-H, Vakoc BJ, Suter MJ, Tearney GJ. Fourier-domain optical coherence tomography: recent advances toward clinical utility. Curr Opin Biotechnol. 2009;20(1):111-118. doi: 10.1016/j.copbio.2009.02.007
Yang Z, Tatham AJ, Zangwill LM, Weinreb RN, Zhang C, Medeiros FA. Diagnostic ability of retinal nerve fiber layer imaging by swept-source optical coherence tomography in glaucoma. Am J Ophthalmol. 2015;159(1):193-201. doi: 10.1016/j.ajo.2014.10.019
Potsaid B, Baumann B, Huang D, Barry S, Cable AE, Schuman JS, et al. Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt Express. 2010;18(19):20029-20048. doi:10.1364/OE.18.020029
Choma M, Sarunic M, Yang C, Izatt J. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express. 2003;11(18):2183-2189. doi:10.1364/oe.11.002183
Rajai P, Schriemer H, Amjadi A, Munger R. Simultaneous measurement of refractive index and thickness of multilayer systems using Fourier domain optical coherence tomography, part 2: implementation. J Biomed Opt. 2017;22(1):15003. doi: 10.1117/1.JBO.22.1.015003
Schmitt JM. Optical coherence tomography (OCT): a review. IEEE J Sel Top Quantum Electron. 1999;5(4):1205-1215. doi:10.1109/2944.796348
Zlokolica V, Jovanov L, Pižurica A, De Keyser P, Dhaenens F, Philips W. Wavelet-based denoising for 3D OCT images. Proc. SPIE 6696, Applications of Digital Image Processing XXX; 8 October 2007; San Diego, California, United States. doi: 10.1117/12.734286
Gelikonov GV, Gelikonov VM, Shilyagin PA. Linear wave-number spectrometer for spectral domain optical coherence tomography. Proc. SPIE 6847, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XII; 18 February 2008; San Jose, California, United States. doi:10.1117/12.763541
Chan KKH, Tang S. High-speed spectral domain optical coherence tomography using non-uniform fast Fourier transform. Biomed Opt Express. 2010;1(5):1309-1319. doi:10.1364/BOE.1.001309
Leitgeb RA, Drexler W, Unterhuber A, Hermann B, Bajraszewski T, Le T, et al. Ultrahigh resolution Fourier domain optical coherence tomography. Opt Express. 2004;12(10):2156-2165. doi:10.1364/opex.12.002156
Dorrer, C, Belabas, N, Likforman, J, Joffre, M. Spectral resolution and sampling issues in Fourier-transform spectral interferometry. J Opt Soc Am B. 2000; 17(10):1795-1802. doi:10.1364/JOSAB.17.001795
Shin S, Sharma U, Tu H, Jung, W. Boppart S. Characterization and Analysis of Relative Intensity Noise in Broadband Optical Sources for Optical Coherence Tomography. IEEE Photonics Technol Lett. 2010; 22(14):1057-1059. doi:10.1109/LPT.2010.2050058
Moon S, Lee S, Chen Z. Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography. Opt Express. 2010; 18(24): 24395-404. doi:10.1364/OE.18.024395
Bashkansky M, Reintjes J. Statistics and reduction of speckle in optical coherence tomography. Opt Lett. 2000;25(8): 545-7. doi:10.1364/OL.25.000545
Li M, Idoughi R, Choudhury B, Heidrich, W. Statistical model for OCT image denoising. Biomed Opt Express. 2017; 8(9): 3903-17. doi:10.1364/BOE.8.003903
Wu Y, Tracey B, Natarajan P, Noonan J. James–Stein Type Center Pixel Weights for Non-Local Means Image Denoising. IEEE Signal Process Lett. 2013; 20(4): 411-414. doi:10.1109/LSP.2013.2247755
Leitgeb R, Hitzenberger C, Fercher A, Bajraszewski T. Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography. Optics Lett. 2003; 28(22): 2201-4. doi:10.1364/OL.28.002201
Adhi M, Duker J. Optical coherence tomography – current and future applications. Curr Opin Ophthalmol. 2013;24(3): 213-221. doi: 10.1097/ICU.0b013e32835f8bf8
Gambichler T, Moussa G, Sand M, Sand D, Altmeyer P, Hoffmann K. Applications of optical coherence tomography in dermatology. J Dermatol Sci. 2005 40(2): 85-94. doi:10.1016/j.jdermsci.2005.07.006
Fujimoto J, Drexler W, Schuman J, Hitzenberger, C. Optical Coherence Tomography (OCT) in Ophthalmology: Introduction. Opt Express. 2009;17(5): 3978-9. doi:10.1364/oe.17.003978
- Abstract Viewed: 431 times
- PDF Downloaded: 237 times