Predicting Radioresistant Biomarkers in Nasopharyngeal Carcinoma Patients Via ProteinProtein Interaction Network Analysis Predicting Radioresistant Biomarkers in Nasopharyngeal Carcinoma Patients
Journal of Lasers in Medical Sciences,
Vol. 12 (2021),
13 February 2021
,
Page e76
Abstract
Introduction: Radiotherapy as the first-line nasopharyngeal carcinoma (NPC) treatment provides different responses including radioresistant and radiosensitive states. In order to investigate the molecular basis of radioresistancy, protein-protein interaction network analysis of proteome data prior to therapy was performed.
Methods: 20 dysregulated proteins of the patients who were radioresistant were extracted from the literature. Cytoscape and its plug-ins were used for the resistant network construction and its centrality analysis. Furthermore, ClueGO+ CluePedia application determined the most statistically significant biological processes (BP) related to the hubs.
Results: Fourteen hubs were concluded and no differentially expressed protein (DEP) was among these agents. Among the hubs, albumin (ALB) and fibronectin (FN1) were the hub-bottlenecks, and the Serpin family was present. What is more, SERPIND1 was the highest degree-valued DEP in the network.
Conclusion: It can be concluded that the central elements of the NPC network could be noteworthy for improving the radiotherapy outcome and overcoming its limitations. However, complementary studies are required for a better understanding of their major role.
DOI: doi:10.34172/jlms.2021.76
- Nasopharyngeal carcinoma; Radiotherapy; Radioresistance; Biomarkers; Protein-protein interaction network analysis
How to Cite
References
Ding R-B, Chen P, Rajendran BK, Lyu X, Wang H, Bao J, et al. Molecular landscape and subtype-specific therapeutic response of nasopharyngeal carcinoma revealed by integrative pharmacogenomics. Nat Commun. 2021;12(1):1-19. doi: 10.1038/s41467-021-23379-3.
Xiao Z, Li M, Li G, Fu Y, Peng F, Chen Y, et al. Proteomic characterization reveals a molecular portrait of nasopharyngeal carcinoma differentiation. J Cancer. 2017;8(4):570-7. doi: 10.7150/jca.17414.
Chen C, Liang K, Chang Y, Wang Y, Hsieh T, Hsu M-M, et al. Multiple risk factors of nasopharyngeal carcinoma: Epstein-Barr virus, malarial infection, cigarette smoking and familial tendency. Anticancer Res. 1990;10(2B):547-53.
Zheng Y, Tuppin P, Hubert A, Jeannel D, Pan Y, Zeng Y, et al. Environmental and dietary risk factors for nasopharyngeal carcinoma: a case-control study in Zangwu County, Guangxi, China. British J Cancer. 1994;69(3):508-14. doi: 10.1038/bjc.1994.92.
Zhao L, Fong AH, Liu N, Cho WC. Molecular subtyping of nasopharyngeal carcinoma (NPC) and a microRNA-based prognostic model for distant metastasis. J Biomed Sci. 2018;25(1):1-12. doi: 10.1186/s12929-018-0417-5.
Zhang G, Zhang K, Li C, Li Y, Li Z, Li N, et al. Serum proteomics identify potential biomarkers for nasopharyngeal carcinoma sensitivity to radiotherapy. Biosci Rep. 2019;39(5): BSR20190027. doi: 10.1042/BSR20190027.
Hutajulu SH, Indrasari SR, Indrawati LP, Harijadi A, Duin S, Haryana SM, et al. Epigenetic markers for early detection of nasopharyngeal carcinoma in a high risk population. Mol Cancer. 2011;10(1):1-9. doi: 10.1186/1476-4598-10-48.
King A, Woo J, Ai Q, Chan J, Lam W, Tse I, et al. Complementary roles of MRI and endoscopic examination in the early detection of nasopharyngeal carcinoma. Ann Oncol. 2019;30(6):977-82. doi: 10.1093/annonc/mdz106.
Wang M-Y, Qi B, Wang F, Lin Z-R, Li M-Y, Yin W-J, et al. PBK phosphorylates MSL1 to elicit epigenetic modulation of CD276 in nasopharyngeal carcinoma. Oncogenesis. 2021;10(1):1-14. doi: 10.1038/s41389-020-00293-9. Erratum in: Oncogenesis. 2021;10(4):35.
Moon SH, Cho KH, Lee C-G, Keum KC, Kim Y-S, Wu H-G, et al. IMRT vs. 2D-radiotherapy or 3D-conformal radiotherapy of nasopharyngeal carcinoma. Strahlenther Onkol. 2016;192(6):377-85. doi: 10.1007/s00066-016-0959-y.
Tang L, Wei F, Wu Y, He Y, Shi L, Xiong F, et al. Role of metabolism in cancer cell radioresistance and radiosensitization methods. J Exp Clin Cancer Res. 2018;37(1):1-15. doi: 10.1186/s13046-018-0758-7.
Zamanian-Azodi M, Rezaei-Tavirani M, Esmaeili S, Arjmand B, Jahani-Sherafat S. Evaluation of anticancer effect of ghost pepper: a bioinformatics assessment. Res J Pharmacogn. 2021;8(3):77-82. doi: 10.22127/RJP.2021.267225.1666.
Azodi MZ, Razzaghi M, Malekpour H, Rezaei-Tavirani M, Rezaei-Tavirani M, Heidari MH. Highlighted role of “IL17 signaling pathway” in gastroesophageal reflux disease. Gastroenterol Hepatol Bed Bench. 2020;13(Suppl1):S68-74. doi:10.22037/ghfbb.v13i1.2245
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607-D13. doi:10.1093/nar/gky1131.
Assenov Y, Ramírez F, Schelhorn S-E, Lengauer T, Albrecht M. Computing topological parameters of biological networks. Bioinformatics. 2008;24(2):282-4. doi: 10.1093/bioinformatics/btm554.
Zamanian-Azodi M, Arjmand B, Razzaghi M, Tavirani MR, Ahmadzadeh A, Rostaminejad M. Platelet and Haemostasis are the Main Targets in Severe Cases of COVID-19 Infection; a System Biology Study. Arch Acad Emerg Med. 2021;9(1): e27. doi: 10.22037/aaem.v9i1.1108.
Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091-3. doi: 10.1093/bioinformatics/btp101.
Bindea G, Galon J, Mlecnik B. CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics. 2013;29(5):661-3. doi:10.1093/bioinformatics/btt019.
Du XJ, Tang LL, Mao YP, Sun Y, Zeng MS, Kang TB et al. The pretreatment albumin to globulin ratio has predictive value for long-term mortality in nasopharyngeal carcinoma. PloS one. 2014;9(4):e94473. doi: 10.1371/journal.pone.0094473.
Jerhammar F, Ceder R, Garvin S, Grénman R, Grafström RC, Roberg K. Fibronectin 1 is a potential biomarker for radioresistance in head and neck squamous cell carcinoma. Cancer Biol Ther. 2010;10(12):1244-51. doi: 10.4161/cbt.10.12.13432. Ep
Valiente M, Obenauf AC, Jin X, Chen Q, Zhang XH-F, Lee DJ, et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell. 2014;156(5):1002-16. doi: 10.1016/j.cell.2014.01.040.
Wojtukiewicz M, Rucinska M, Kloczko J, Dib A, Galar M. Profiles of plasma serpins in patients with advanced malignant melanoma, gastric cancer and breast cancer. Haemostasis. 1998;28(1):7-13. doi: 10.1159/000022376.
Chan HJ, Li H, Liu Z, Yuan Y-C, Mortimer J, Chen S. SERPINA1 is a direct estrogen receptor target gene and a predictor of survival in breast cancer patients. Oncotarget. 2015;6(28):25815-27. doi: 10.18632/oncotarget.4441.
Yang J, Xiong X, Wang X, Guo B, He K, Huang C. Identification of peptide regions of SERPINA1 and ENOSF1 and their protein expression as potential serum biomarkers for gastric cancer. Tumor Biol. 2015;36(7):5109-18. doi: 10.1007/s13277-015-3163-2.
Kwon CH, Park HJ, Choi JH, Lee JR, Kim HK, Jo H-j, et al. Snail and serpinA1 promote tumor progression and predict prognosis in colorectal cancer. Oncotarget. 2015;6(24):20312-26. doi: 10.18632/oncotarget.3964.
Peng S, Du T, Wu W, Chen X, Lai Y, Zhu D, et al. Decreased expression of serine protease inhibitor family G1 (SERPING1) in prostate cancer can help distinguish high-risk prostate cancer and predicts malignant progression. Urol Oncol. 2018;36(8):366.e1-e9. doi: 10.1016/j.urolonc.2018.05.021.
Chan KY, Lai PB, Squire JA, Beheshti B, Wong NL, Sy SM, et al. Positional expression profiling indicates candidate genes in deletion hotspots of hepatocellular carcinoma. Mod Pathol. 2006;19(12):1546-54. doi: 10.1038/modpathol.3800674.
Zhu L, Guo Q, Jin S, Feng H, Zhuang H, Liu C, et al. Analysis of the gene expression profile in response to human epididymis protein 4 in epithelial ovarian cancer cells. Oncol Rep. 2016;36(3):1592-604. doi: 10.3892/or.2016.4926.
Guo Q, Zhu L, Wang C, Wang S, Nie X, Liu J, et al. SERPIND1 affects the malignant biological behavior of epithelial ovarian cancer via the PI3K/AKT pathway: a mechanistic study. Front Oncol. 2019;9:954. doi: 10.3389/fonc.2019.00954.
Thermozier S, Zhang X, Hou W, Fisher R, Epperly MW, Liu B, et al. Radioresistance of Serpinb3a−/− mice and derived hematopoietic and marrow stromal cell lines. Radiat Res. 2019;192(3):267-81. doi: 10.1667/RR15379.1.
Thermozier S, Zhang X, Hou W, Fisher R, Epperly MW, Liu B, Bahar I, Wang H, Greenberger JS. Radioresistance of Serpinb3a-/- Mice and Derived Hematopoietic and Marrow Stromal Cell Lines. Radiat Res. 2019;192(3):267-281. doi: 10.1667/RR15379.1.
Zhang P, Li X, He Q, Zhang L, Song K, Yang X, et al. TRIM21–SERPINB5 aids GMPS repression to protect nasopharyngeal carcinoma cells from radiation-induced apoptosis. J Biomed Sci. 2020;27(1):1-11. doi: 10.1186/s12929-020-0625-7.
- Abstract Viewed: 756 times
- PDF Downloaded: 323 times