Effect of Low-Level Laser Therapy and Sinensetin (Combination therapy) on Tumor Cells (Hela) and Normal Cells (CHO) Combination Therapy on Tumor and Normal Cells
Journal of Lasers in Medical Sciences,
Vol. 12 (2021),
13 February 2021
,
Page e85
Abstract
Introduction: Cervical and ovarian cancers are well-known causes of death among women in developing countries. There are various technologies to treat cancer cells, but the polyphenolic compound is a natural one and has an anti-cancer effect. In this study, we investigated combination therapy using sinensetin and low-level laser therapy (LLLT) to enhance treatment.
Methods: The cancer cells purchased from Pasteur Institute, Iran, were cultured. The cells were treated with various concentrations of sinensetin, wavelengths of laser therapy (660 nm), and power density (3 J/cm2) for different times separately. Furthermore, the sensitivity of cells to sinensetin, LLLT, and combined therapy was determined by clonogenic assays. To measure DNA damage and repair at individual cell level used comet assay. To examine the intracellular generation of reactive oxygen species used 2′,7′-dichlorodihydrofluorescein (DCFH) as an intracellular probe. To analyze data we used SPSS software and comparison between groups was used (ANOVA) and t-test statistical analyses were performed using SPSS 17 software. The level of statistical significance was set at a two-tailed P value of 0.05.
Results: Our results demonstrated that the doubling time for CHO is more than Hella cells, with 20.7 and 27.7 h for each cell respectively. The pretreatments can decrease the viability of both cell lines more than the first treatment. In the clonogenic assay, the pretreatment of cells with LLLT and Sinensetin significantly reduced the surviving fraction of both cell lines. MTT results showed that pretreatment with LLLT and Sinensetin can increase cell death compared to Sinensetin and LLLT alone.
Conclusion: Our result indicated that combined therapy with LLLT and Sinensetin can treat CHO and Hela cells better than the other groups. Combination treatment with sinensetin-LLLT and the other treatment means, sinensetin and LLLT alone, did not change the cell viability significantly.
- Sinensetin; Low-level laser irradiation (LLLT); CHO; Hella; Anti-cancer effect; Combined therapy
How to Cite
References
Bedell SL, Goldstein LS, Goldstein AR, Goldstein AT. Cervical Cancer Screening: Past, Present, and Future. Sex Med Rev. 2020;8(1):28-37. doi: 10.1016/j.sxmr.2019.09.005.
Lopez-Charcas O, Espinosa AM, Alfaro A, Herrera-Carrillo Z, Ramirez-Cordero BE, Cortes-Reynosa P, et al. The invasiveness of human cervical cancer associated to the function of NaV1.6 channels is mediated by MMP-2 activity. Sci Rep. 2018;8:12995. doi: 10.1038/s41598-018-31364-y.
Stark A, Gregoire L, Pilarski R, Zarbo A, Gaba A, Lancaster WD. Human papillomavirus, cervical cancer and women's knowledge. Cancer Detect Prev. 2008;32(1):15-22. doi:10.1016/j.cdp.2008.02.002.
Vargas AN. Natural history of ovarian cancer. Ecancermedicalscience. 2014;8:465. doi:10.3332/ecancer.2014.465
Kwon YS, Mok JE, Lim KT, Lee IH, Kim TJ, Lee KH, et al. Ovarian cancer during pregnancy: clinical and pregnancy outcome. J Korean Med Sci. 2010;25(2):230-4. doi: 10.3346/jkms.2010.25.2.230.
Barut A, Arikan I, Barut F, Harma M, Harma MI, Payasli B. Ovarian cancer during pregnancy. J Pak Med Assoc. 2011;61(9):914-916.
Peto J, Gilham C, Fletcher O, Matthews FE. The cervical cancer epidemic that screening has prevented in the UK. Lancet. 2004;364(9430):249-56. doi: 10.1016/S0140-6736(04)16674-9.
Thomson CS, Forman D. Cancer survival in England and the influence of early diagnosis: what can we learn from recent EUROCARE results?. Br J Cancer. 2009;101(Suppl 2): S102-S109. doi:10.1038/sj.bjc.6605399
Johnson R, Shabalala S, Louw J, Kappo AP, Muller CJF. Aspalathin Reverts Doxorubicin-Induced Cardiotoxicity through Increased Autophagy and Decreased Expression of p53/mTOR/p62 Signaling. Molecules. 2017;22(10):1589. doi: 10.3390/molecules22101589.
Singh A, Holvoet S, Mercenier A. Dietary polyphenols in the prevention and treatment of allergic diseases. Clin Exp Allergy. 2011;41(10):1346-59. doi: 10.1111/j.1365-2222.2011.03773.x.
Pereira CV, Duarte M, Silva P, Bento da Silva A, Duarte CMM, Cifuentes A, et al. Polymethoxylated Flavones Target Cancer Stemness and Improve the Antiproliferative Effect of 5-Fluorouracil in a 3D Cell Model of Colorectal Cancer. Nutrients. 2019;11(2):326. doi: 10.3390/nu11020326.
Rezakhani N, Goliaei B, Parivar K, Nikoofar A. Effects of X-irradiation and sinensetin on apoptosis induction in MDA-MB-231 human breast cancer cells. Int J Radiat Res. 2020; 18 (1) :75-82. doi:10.18869/acadpub.ijrr.18.1.75
Han Jie L, Jantan I, Yusoff SD, Jalil J, Husain K. Sinensetin: An Insight on Its Pharmacological Activities, Mechanisms of Action and Toxicity. Front Pharmacol. 2021;11:553404. doi:10.3389/fphar.2020.553404
Wang C. Complementary and Alternative Medicine and Osteoarthritis. Int J Integr Med. 2013;1:13. doi: 10.5772/56431.
Silva JC, Lacava ZG, Kuckelhaus S, Silva LP, Neto LF, Sauro EE, et al. Evaluation of the use of low level laser and photosensitizer drugs in healing. Lasers Surg Med. 2004;34(5):451-7. doi: 10.1002/lsm.20062.
Wu S, Xing D, Gao X, Chen WR. High fluence low-power laser irradiation induces mitochondrial permeability transition mediated by reactive oxygen species. J Cell Physiol. 2009;218(3):603-11. doi: 10.1002/jcp.21636.
Agrawal T, Gupta GK, Rai V, Carroll JD, Hamblin MR. Pre-conditioning with low-level laser (light) therapy: light before the storm. Dose Response. 2014;12(4):619-49. doi: 10.2203/dose-response.14-032.Agrawal.
Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1(5):2315-2319. doi:10.1038/nprot.2006.339
Djavid GE, Goliaie B, Nikoofar A. Analysis of Radiomodulatory Effect of Low-Level Laser Irradiation by Clonogenic Survival Assay. Photomed Laser Surg. 2015;33(9):452-459. doi:10.1089/pho.2015.3893
Seidel C, Lautenschläger C, Dunst J, Müller AC. Factors influencing heterogeneity of radiation-induced DNA-damage measured by the alkaline comet assay. Radiat Oncol. 2012;7:61. doi: 10.1186/1748-717X-7-61.
Moshkovska T, Mayberry J. It is time to test low level laser therapy in Great Britain. Postgrad Med J. 2005;81(957):436-41. doi: 10.1136/pgmj.2004.027755.
Mansouri V, Arjmand B, Rezaei Tavirani M, Razzaghi M, Rostami-Nejad M, Hamdieh M. Evaluation of Efficacy of Low-Level Laser Therapy. J Lasers Med Sci. 2020;11(4):369-380. doi:10.34172/jlms.2020.60
da Silva JL, Silva-de-Oliveira AFS, Andraus RAC, Maia LP. Effects of low level laser therapy in cancer cells-a systematic review of the literature. Lasers Med Sci. 2020;35(3):523-529. doi: 10.1007/s10103-019-02824-2.
Wong-Riley MT, Liang HL, Eells JT, Chance B, Henry Salzman MM, Buchmann E, et al. Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem. 2005;280(6):4761-4771. doi:10.1074/jbc.M409650200
Liang HL, Whelan HT, Eells JT, Wong-Riley MT. Near-infrared light via light-emitting diode treatment is therapeutic against rotenone- and 1-methyl-4-phenylpyridinium ion-induced neurotoxicity. Neuroscience. 2008;153(4):963-974. doi: 10.1016/j.neuroscience.2008.03.042
Huang YY, Nagata K, Tedford CE, McCarthy T, Hamblin MR. Low-level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro. J Biophotonics. 2013;6(10):829-838. doi:10.1002/jbio.201200157
Tadjalli-Mehr K, Becker N, Rahu M, Stengrevics A, Kurtinaitis J, Hakama M. Randomized trial with fruits and vegetables in prevention of cancer. Acta Oncol. 2003;42(4):287-293. doi:10.1080/02841860310011852
Chen D, Dou QP. Tea polyphenols and their roles in cancer prevention and chemotherapy. Int J Mol Sci. 2008;9(7):1196-1206. doi:10.3390/ijms9071196
Palazzetti S, Richard MJ, Favier A, Margaritis I. Overloaded training increases exercise-induced oxidative stress and damage. Can J Appl Physiol. 2003;28(4):588-604. doi:10.1139/h03-045.
Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev. 2009;2(5):270-8. doi: 10.4161/oxim.2.5.9498.
Othman L, Sleiman A, Abdel-Massih RM. Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Front Microbiol. 2019; 10:911. doi: 10.3389/fmicb.2019.00911.
Di Meo F, Lemaur V, Cornil J, Lazzaroni R, Duroux JL, Olivier Y, et al. Free radical scavenging by natural polyphenols: atom versus electron transfer. J Phys Chem A. 2013;117(10):2082-92. doi: 10.1021/jp3116319.
Fife D, Rayhan DJ, Behnam S, Ortiz A, Elkeeb L, Aquino L, et al. A randomized, controlled, double-blind study of light emitting diode photomodulation for the prevention of radiation dermatitis in patients with breast cancer. Dermatol Surg. 2010;36(12):1921-7. doi: 10.1111/j.1524-4725.2010.01801.x.
Kim JA, Kim SM, Ha SE, Vetrivel P, Saralamma VVG, Kim EH, et al. Sinensetin regulates age-related sarcopenia in cultured primary thigh and calf muscle cells. BMC Complement Altern Med. 2019;19(1):287. doi: 10.1186/s12906-019-2714-2.
Kotarsky K, Nilsson NE, Flodgren E, Owman C, Olde B. A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs. Biochem Biophys Res Commun. 2003;301(2):406-10. doi: 10.1016/s0006-291x (02)03064-4.
Ghavami L, Goliaei B, Taghizadeh B, Nikoofar A. Effects of barley β-glucan on radiation damage in the human hepatoma cell line HepG2. Mutat Res Genet Toxicol Environ Mutagen. 2014 Dec;775-776:1-6. doi: 10.1016/j.mrgentox.2014.09.005.
Bigdeli B, Goliaei B, Masoudi-Khoram N, Jooyan N, Nikoofar A, Rouhani M, et al. Enterolactone: A novel radiosensitizer for human breast cancer cell lines through impaired DNA repair and increased apoptosis. Toxicol Appl Pharmacol. 2016; 313:180-194. doi: 10.1016/j.taap.2016.10.021.
Azqueta A, Collins A. Polyphenols and DNA Damage: A Mixed Blessing. Nutrients. 2016;8(12):785. doi: 10.3390/nu8120785.
Tanaka T, Munshi A, Brooks C, Liu J, Hobbs ML, Meyn RE. Gefitinib radiosensitizes non-small cell lung cancer cells by suppressing cellular DNA repair capacity. Clin Cancer Res. 2008;14(4):1266-1273. doi: 10.1158/1078-0432.CCR-07-1606
Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552(Pt 2):335-44. doi: 10.1113/jphysiol.2003.049478.
Guerra-Castellano A, Díaz-Quintana A, Pérez-Mejías G, Elena-Real CA, González-Arzola K, García-Mauriño SM, et al. Oxidative stress is tightly regulated by cytochrome c phosphorylation and respirasome factors in mitochondria. Proc Natl Acad Sci U S A. 2018;115(31):7955-7960. doi: 10.1073/pnas.1806833115.
- Abstract Viewed: 506 times
- PDF Downloaded: 335 times