Effect of Low-Level Laser Therapy on Bacterial Counts of Contaminated Traumatic Wounds in Dogs Effect of Laser Therapy on Contaminated Wounds in Dogs
Journal of Lasers in Medical Sciences,
Vol. 12 (2021),
13 Bahman 2021
,
Page e78
Abstract
Introduction: The clinical effect of low-level laser therapy (LLLT) on canine wounds is still under debate. The aim of this pilot study was to evaluate the potential influence of LLLT on the bacterial loads of wounds, using two different energy densities or doses of laser light as adjuvant therapy for traumatic contaminated wound management.
Methods: A prospective, randomized, blinded, placebo-controlled pilot clinical trial was used to evaluate the effect of two different doses of LLLT as an adjuvant treatment of contaminated traumatic wounds on the bacterial load and wound scoring in dogs. Fourteen dogs with traumatic bites or laceration wounds were randomly assigned to one of the three groups. Animals in groups A and B received a dose of LLLT of 6 and 2 J/cm2 respectively. Four wavelengths were used simultaneously:
660 nm, 800 nm, 905 nm, and 970 nm. Animals in group C received placebo LLLT. Bacterial burden and clinical wound scores were evaluated.
Results: A statistically significant reduction in the average count of colony-forming units was observed in group B (2 J/cm2) when compared to placebo group C. Group B also showed improved wound scores. No clinically adverse effects were observed in the patients treated with LLLT.
Conclusion: LLLT, with the parameters used in this pilot trial, decreased bacterial loads of contaminated wounds in dogs and improved wound scores, especially when using a dose of 2 J/cm2. This is the first time the effect of LLLT on bacterial load has been investigated in a clinical setting using traumatic wounds in canine patients.
- Laser therapy; Wounds; Bacterial count/bacterial load
How to Cite
References
2. Renwick SM, Renwick AI, Brodbelt DC, et al. Influence of class IV laser therapy on the outcomes of tibial plateau leveling osteotomy in dogs. Vet Surg. 2018;47(4):507–515. doi:10.1111/vsu.12794
3. Passarella S, Karu T. Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. J Photochem Photobiol B Biol. 2014;140:344–358. doi:10.1016/j.jphotobiol.2014.07.021
4. Karu T. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B Biol. 1999;49(1):1–17. doi:10.1016/S1011-1344(98)00219-X
5. Xu Y, Lin Y, Gao S, et al. Study on mechanism of release oxygen by photo-excited hemoglobin in low-level laser therapy. Lasers Med Sci. 2018;33(1):135–139. doi:10.1007/s10103-017-2363-y
6. Lubart R, Eichler M, Lavi R, et al. Low-energy laser irradiation promotes cellular redox activity. Photomed Laser Surg. 2005;23(1):3–9. doi: 10.1089/pho.2005.23.3.
7. Da Silva F, De Oliveira R, Ferreira M. Effects of low-level laser therapy on wound healing. Rev Col Bras Cir. 2014;41(2):129–133. doi: 10.1590/s0100-69912014000200010.
8. Hawkins D, Houreld N, Abrahamse H. Low level laser therapy (LLLT) as an effective therapeutic modality for delayed wound healing. Ann N Y Acad Sci. 2005;1056:486–493.doi: 10.1196/annals.1352.040.
9. Ankri R, Lubart R, Taitelbaum H. Estimation of the optimal wavelengths for laser-induced wound healing. Lasers Surg Med. 2010;42(8):760–764. doi: 10.1002/lsm.20955.
10. Jimbo K, Noda K, Suzuki K, et al. Suppressive effects of low-power laser irradiation on bradykinin evoked action potentials in cultured murine dorsal root ganglion cells. Neurosci Lett. 1998;240(2):93–96. doi: 10.1016/s0304-3940(97)00935-x.
11. Toida M, Watanabe F, Goto K, et al. Usefulness of low-level laser for control of painful stomatitis in patients with hand-foot-and-mouth disease. J Clin Laser Med Surg. 2003;21(6):363–367.doi: 10.1089/104454703322650176.
12. Enwemeka CS, Parker JC, Dowdy DS, et al. The efficacy of low-power lasers in tissue repair and pain control: A meta-analysis study. Photomed Laser Surg. 2004;22(4):323–329. doi: 10.1089/pho.2004.22.323.
13. Jann HW, Bartels K, Ritchey JW, et al. Equine wound healing: Influence of low level laser therapy on an equine metacarpal wound healing model. Photonics Lasers Med. 2012;1(2):117–122. doi:10.1515/plm-2012-0004
14. Nussbaum EL, Lilge L, Mazzulli T. Effects of 630-. 660-, 810-. and 905-nm laser irradiation delivering radiant exposure of 1-50 J/cm2 on three species of bacteria in vitro. J Clin Laser Med Surg. 2002;20(6):325–333. doi: 10.1089/104454702320901116.
15. Krespi YP, Kizhner V. Laser-assisted nasal decolonization of Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus. Am J Otolaryngol - Head Neck Med Surg. 2012;33(5):572–575. doi:10.1016/j.amjoto.2012.02.002
16. Baffoni M, LJ B, Grande R, et al. Laser irradiation effect on Staphylococcus aureus and Pseudomonas aeruginosa biofilms isolated from venous leg ulcer. Int Wound J. 2012;9(5):517–524.doi: 10.1111/j.1742-481X.2011.00910.x
17. Topaloglu N, Guney M, Aysan N, et al. The role of reactive oxygen species in the antibacterial photodynamic treatment: Photoinactivation vs proliferation. Lett Appl Microbiol. 2016;62(3):230–236. doi: 10.1111/lam.12538
18. Ranjbar R, Takhtfooladi MA. The effects of low level laser therapy on Staphylococcus aureus infected third-degree burns in diabetic rats. Acta Cir Bras. 2016;31(4):250–255. doi: 10.1590/S0102-865020160040000005.
19. Pereira PR, De Paula JB, Cielinski J, et al. Effects of low intensity laser in in vitro bacterial culture and in vivo infected wounds. Rev Col Bras Cir. 2014;41(1):49–55. doi:10.1590/S0100-69912014000100010
20. Lee SY, Seong IW, Kim JS, et al. Enhancement of cutaneous immune response to bacterial infection after low-level light therapy with 1072 nm infrared light: A preliminary study. J Photochem Photobiol B Biol. 2011;105(3):175–182. doi: 10.1016/j.jphotobiol.2011.08.009.
21. Lacjaková K, Bobrov N, Poláková M, et al. Effects of equal daily doses delivered by different power densities of low-level laser therapy at 670 nm on open skin wound healing in normal and corticosteroid-treated rats: A brief report. Lasers Med Sci. 2010;25(5):761–766. doi: 10.1007/s10103-010-0791-z
22. Gomes DC, Matiuzzi M, Aquino de Sá MC, et al. Low level laser therapy (AlGaInP) applied at 5J/cm2 reduces the proliferation of Staphylococcus aureus MRSA in infected wounds and intact skin of rats. An Bras Dermatol. 2013;88(1):50–55. doi: 10.1590/s0365-05962013000100005.
23. Percival SL, Francolini I, Donelli G. Low-level laser therapy as an antimicrobial and antibiofilm technology and its relevance to wound healing. Future Microbiol. 2015;10(2):255–272. doi: 10.2217/fmb.14.109.
24. Horan TC, Gaynes RP, Martone WJ, et al. CDC definitions of nosocomial surgical site infections, 1992 : A modification of CDC definitions of surgical wound infection. Am J Infect Control. 1992;20(5):271–4. doi: 10.1016/s0196-6553(05)80201-9.
25. Falanga V, Saap LJ, Ozonoff A. Wound bed score and its correlation with healing of chronic wounds. Dermatol Ther. 2006;19(6):383-390x
26. Balsa IM, Culp WTN. Wound Care. Vet Clin North Am Small Anim Pract. 2015;45(5):1049–1065. doi: 10.1016/j.cvsm.2015.04.009
27. Stegemann M, Coati N, Passmore C, et al. Clinical efficacy and safety of cefovecin in the treatment of canine pyoderma and wound infections. J Small Anim Pract. 2007;48(7):378–386. doi: 10.1111/j.1748-5827.2007.00363.x.
28. Six R, Cherni J, Chesebrough R, et al. Efficacy and safety of cefovecin in treating bacterial folliculitis, abscesses, or infected wounds in dogs. J Am Vet Med Assoc. 2008;233(3):433–439.doi: 10.2460/javma.233.3.433.
29. Abrahamian FM, Goldstein EJC. Microbiology of animal bite wound infections. Clin Microbiol Rev. 2011;24(2):231-246. doi:10.1128/CMR.00041-10
30. Mouro S, Vilela CL, Niza MMRE. Clinical and bacteriological assessment of dog-to-dog bite wounds. Vet Microbiol. 2010;144(1-2):127-132. doi:10.1016/j.vetmic.2009.12.042
31. Bradley DS. Wounds. In: Riegel RJ, Godbold JC, eds. Laser Therapy in Veterinary Medicine: Photobiomodulation. John Wiley and Sons; 2017,100–113.
32. De Sousa NTA, Gomes RC, Santos MF, et al. Red and infrared laser therapy inhibits in vitro growth of major bacterial species that commonly colonize skin ulcers. Lasers Med Sci. 2016;31(3):549–556. doi: 10.1007/s10103-016-1907-x
33. De Sousa NTA, Santos MF, Gomes RC, et al. Blue Laser Inhibits Bacterial Growth of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Photomed Laser Surg. 2015;33(5):278–282.
34. Enwemeka CS, Williams D, Enwemeka SK, et al. Blue 470-nm light kills methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Photomed Laser Surg. 2009;27(2):221–226. doi: 10.1089/pho.2014.3854
35. Bayat M, Vasheghani MM, Razavi N, et al. Effect of low-level laser therapy on the healing of second-degree burns in rats: A histological and microbiological study. J Photochem Photobiol B Biol. 2005;78(2):171–177. doi: 10.1016/j.jphotobiol.2004.08.012.
36. Nussbaum EL, Lilge L, Mazzulli T. Effects of 810 nm laser irradiation on in vitro growth of bacteria: Comparison of continuous wave and frequency modulated light. Lasers Surg Med. 2002;31(5):343–351. doi: 10.1002/lsm.10121.
37. Krespi YP, Kizhner V, Kara CO. Laser-induced microbial reduction in acute bacterial rhinosinusitis. Am J Rhinol Allergy. 2009;23(6):e29−32. doi: 10.2500/ajra.2009.23.3404.
38. Kaya GŞ, Kaya M, Gürsan N, et al. The use of 808-nm light therapy to treat experimental chronic osteomyelitis induced in rats by methicillin-resistant Staphylococcus aureus. Photomed Laser Surg. 2011;29(6):405–412. doi: 10.1089/pho.2010.2807.
39. Nussbaum EL, Mazzulli T, Pritzker KPH, et al. Effects of low intensity laser irradiation during healing of skin lesions in the rat. Lasers Surg Med. 2009;41(5):372–381. doi: 10.1002/lsm.20769.
40. Manevitch Z, Lev D, Hochberg M, et al. Direct Antifungal Effect of Femtosecond Laser on Trichophyton rubrum Onychomycosis. Photochem Photobiol. 2010;86:476–479.doi: 10.1111/j.1751-1097.2009.00672.x.
41. Wilson M, Pratten J. Lethal photosensitisation of Staphylococcus aureus in vitro: Effect of growth phase, serum, and pre‐irradiation time. Lasers Surg Med. 1995;16(3):272–276. doi: 10.1002/lsm.1900160309.
42. Karu T, Tiphlova O, Samokhina M, et al. Effects of near-infrared laser and superluminous diode irradiation on Escherichia coli division rate. IEEE J Quantum Electron. 1990;26(12):2162–2165. doe:10.1109/3.64353
43. Hashmi JT, Huang YY, Sharma SK, et al. Effect of pulsing in low-level light therapy. Lasers Surg Med. 2010;42(6):450–466. doi: 10.1002/lsm.20950.
44. Gammel JE, Biskup JJ, Drum MG, et al. Effects of low-level laser therapy on the healing of surgically closed incisions and surgically created open wounds in dogs. Vet Surg. 2018;47(4):499–506. doi: 10.1111/vsu.12795. Epub 2018 Apr 14.
45. Kurach LM, Stanley BJ, Gazzola KM, et al. The effect of low-level laser therapy on the healing of open wounds in dogs. Vet Surg. 2015;44(8):988–996. doi: 10.1111/vsu.12407
46. Peplow P V, Chung T, Baxter GD. Laser photobiomodulation of wound healing : A review of experimental studies in mouse and rat animal models. Photomed Laser Surg. 2010;28(3):291–325. doi: 10.1089/pho.2008.2446.
47. Houreld N, Abrahamse H. Irradiation with a 632.8 nm helium-neon laser with 5 J/cm2 stimulates proliferation and expression of interleukin-6 in diabetic wounded fibroblast cells. Diabetes Technol Ther. 2007;9(5):451–459. doi: 10.1089/dia.2007.0203.
48. Gagnon D, Gibson TWG, Singh A, et al. An in vitro method to test the safety and efficacy of low-level laser therapy (LLLT) in the healing of a canine skin model. BMC Vet Res. 2016;12(1):73. doi: 10.1186/s12917-016-0689-5
49. Novaes RD, Gonçalves RV, Cupertino MC, et al. The energy density of laser light differentially modulates the skin morphological reorganization in a murine model of healing by secondary intention. Int J Exp Pathol. 2014;95(2):138–146. doi: 10.1111/iep.12063
.50. Noelle D, Christiansen C, Dore D. Bactericidal effect of 0.95-mW Helium-Neon and 5-mW Indium-Gallium-Aluminum-Phosphate laser irradiation at exposure times of 30, 60 and 120 seconds of photosensitized Staphylococcus aureus and Pseudomonas aeruginosa in vitro. Phys Ther. 2018;79(9):839–846. doi:10.1093/ptj/79.9.839
51. Reddy GK. Comparison of the photostimulatory effects of visible He-Ne and infrared Ga-As lasers on healing impaired diabetic rat wounds. Lasers Surg Med. 2003;351(August):344–351.doi: 10.1002/lsm.10227.
52. Kisuk K, Hum LD, Kun KS. Effects of low incident energy levels of infrared laser irradiation on the proliferation of streptococcus mutans. Laser Ther. 1992;4(2):81–85.
53. Nussbaum EL, Lilge L, Mazzulli T. Effects of low-level laser therapy ( LLLT ) of 810 nm upon in vitro growth of bacteria: Relevance of irradiance and radiant exposure. J Clin Laser Med Surg. 2003;21(5):283–290. doi: 10.1089/104454703322564497.
54. Santos NRS, de M. Sobrinho JB, Almeida PF, et al. Influence of the combination of infrared and red laser light on the healing of cutaneous wounds infected by Staphylococcus aureus. Photomed Laser Surg. 2011;29(3):177–182. doi: 10.1089/pho.2009.2749
55. Araujo BF, Silva LI, Meireles A, et al. Effects of low-level laser therapy, 660 nm, in experimental septic arthritis. ISRN Rheumatol. 2013;2013:1–8. doi: 10.1155/2013/341832.
56. Vasheghani MM, Bayat M, Dadpay M, et al. Low-level laser therapy with pulsed infrared laser accelerates third-degree burn healing process in rats. Photomed Laser Surg. 2009;46(4):543. doi: 10.1089/pho.2008.2366.
57. Medrado A, Pugliese LS, Reis SR, et al. Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts. Lasers Surg Med. 2003;32(3):239–244. doi: 10.1002/lsm.10126.
58. Colombo F, Neto A, de Sousa APC, et al. Effect of low-level laser therapy (λ660 nm) on angiogenesis in wound healing: A immunohistochemical study in a rodent model. Braz Dent J. 2013;24(4):308–312. doi: 10.1590/0103-6440201301867.
59. Dao H, Kazin RA. Gender differences in skin: A review of the literature. Gend Med. 2007;4(4):308–328. doi: 10.1016/s1550-8579(07)80061-1.
- Abstract Viewed: 615 times
- PDF Downloaded: 288 times