Low-Level Laser Therapy Effects on Rat Blood Hemostasis Via Significant Alteration in Fibrinogen and Plasminogen Expression Level Low Level Laser Therapy Effects on Rat Blood Hemostasis
Journal of Lasers in Medical Sciences,
Vol. 12 (2021),
13 Bahman 2021
,
Page e59
Abstract
Introduction: There are many documents about the significant role of low-level laser therapy (LLLT) in different processes such as regenerator medicine and bone formation. The aim of this study is to assess the role of LLLT in blood hemostasis in rats via bioinformatic investigation.
Methods: The differentially expressed plasma proteins of treated rats via LLLT from the literature and the added 50 first neighbors were investigated via network analysis to find the critical dysregulated proteins and biological processes by using Cytoscape software, the STRING database, and ClueGO.
Results: A scale-free network including 55 nodes was constructed from queried and added first neighbor proteins. Fibrinogen gamma, fibrinogen alpha, and plasminogen were highlighted as the central genes of the analyzed network. Fibrinolysis was determined as the main group of biological processes that were affected by LLLT.
Conclusion: Findings indicate that LLLT affects blood hemostasis which is an important point in
approving the therapeutic application of LLLT and also preventing its possible complication.
- Laser therapy; Differentially expressed proteins; Bioinformatics; Rat; Blood hemostasis
How to Cite
References
Khalkhal E, Razzaghi M, Rostami-Nejad M, Rezaei-Tavirani M, Beigvand HH, Tavirani MR. Evaluation of laser effects on the human body after laser therapy. J Lasers Med Sci. 2020;11(1):91. doi: 10.15171/jlms.2020.15.
Smith SA, Travers RJ, Morrissey JH. How it all starts: Initiation of the clotting cascade. Crit Rev Biochem Mol Biol. 2015;50(4):326-36. doi: 10.3109/10409238.2015.1050550.
Austin AW, Wissmann T, von Känel R. Stress and hemostasis: an update. Semin Thromb Hemost 2013;39(08): 902-912. doi: 10.1055/s-0033-1357487
Raphael J, Mazer CD, Subramani S, Schroeder A, Abdalla M, Ferreira R, et al. Society of Cardiovascular Anesthesiologists clinical practice improvement advisory for management of perioperative bleeding and hemostasis in cardiac surgery patients. J Cardiothorac Vasc Anesth. 2019;33(11):2887-99. doi.10.1053/j.jvca.2019.04.003
Ogita M, Tsuchida S, Aoki A, Satoh M, Kado S, Sawabe M, et al. Increased cell proliferation and differential protein expression induced by low-level Er: YAG laser irradiation in human gingival fibroblasts: proteomic analysis. Lasers Med Sci. 2015;30(7):1855-66. doi: 10.1007/s10103-014-1691-4.
Trajano L, Sergio L, Silva C, Carvalho L, Mencalha A, Stumbo A, et al. Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts. Laser Phys Lett. 2016;13(7):075601. doi:10.1088/1612-2011/13/7/075601
Arjmand B, Vafaee R, Razzaghi M, Rezaei-Tavirani M, Ahmadzadeh A, Rezaei-Tavirani S, et al. Central Proteins of Plasma in Response to Low-Level Laser Therapy Involve in Body Hemostasis and Wound Repair. J Lasers Med Sci. 2020;11(4 Suppl.):S55-S9. doi: 10.34172/jlms.2020.S9.
Zhong X-Z, Li X-X, Zeng Y, Wang S-P, Sun Z-Y, Tang Y-Q. Dynamic change of bacterial community during dairy manure composting process revealed by high-throughput sequencing and advanced bioinformatics tools. Bioresour. Technol. 2020;306:123091. doi: 10.1016/j.biortech.2020.123091
Azodi MZ, Arjmand B, Razzaghi M, Tavirani MR, Ahmadzadeh A, Rostaminejad M. Platelet and Haemostasis are the Main Targets in Severe Cases of COVID-19 Infection; a System Bioinformatics Study. Arch Acad Emerg Med. 2021;9(1):e27. doi: 10.22037/aaem.v9i1.1108
Wu J, Vallenius T, Ovaska K, Westermarck J, Mäkelä TP, Hautaniemi S. Integrated network analysis platform for protein-protein interactions. Nat Methods. 2009;6(1):75-7. doi:10.1038/nmeth.1282.
Tsai C-J, Ma B, Nussinov R. Protein–protein interaction networks: how can a hub protein bind so many different partners?. Trends Biochem. Sci. 2009;34(12):594-600. doi: 10.1016/j.tibs.2009.07.007
Safaei A, Tavirani MR, Oskouei AA, Azodi MZ, Mohebbi SR, Nikzamir AR. Protein-protein interaction network analysis of cirrhosis liver disease. Gastroenterol Hepatol Bed Bench. 2016;9(2):114-23. doi: 10.22037/ghfbb.v9i2.896
Wuchty S, Almaas E. Peeling the yeast protein network. Proteomics. 2005;5(2):444-9. doi: 10.1002/pmic.200400962.
Rabieian R, Abedi M, Gheisari Y. Central nodes in protein interaction networks drive critical functions in transforming growth factor beta-1 stimulated kidney cells. Cell J. 2017;18(4):514-531. doi: 10.22074/cellj.2017.4718
Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, et al. Consortium GO. The Gene Ontology (GO) database and informatics resource. Nucleic acids Res. 2004;32(suppl_1):D258-D261. doi: 10.1093/nar/gkh036.
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25-9. doi: 10.1038/75556.
Schlicker A, Lengauer T, Albrecht M. Improving disease gene prioritization using the semantic similarity of Gene Ontology terms. Bioinformatics. 2010;26(18):i561-i7. doi: 10.1093/bioinformatics/btq384.
Prakash T, Ramachandra NB. Integrated Network and Gene Ontology Analysis Identify Key Genes and Pathways for Coronary Artery Diseases. Avicenna J Med Biotechnol. 2021;13(1):15-23. doi: 10.18502/ajmb.v13i1.4581
Ghatge M, Nair J, Sharma A, Vangala RK. Integrative gene ontology and network analysis of coronary artery disease associated genes suggests potential role of ErbB pathway gene EGFR. Mol Med Rep. 2018;17(3):4253-64. doi: 10.3892/mmr.2018.8393.
Rezaei Tavirani M, Mansouri V, Rezaei Tavirani S, Hesami Tackallou S, Rostami-Nejad M. Gliosarcoma protein-protein interaction network analysis and gene ontology. Int J Cancer Manag. 2018;11(5): e65701. doi: 10.5812/ijcm.65701.
Li L, Zhang N, Li S. Ranking effects of candidate drugs on biological process by integrating network analysis and Gene Ontology. Chinese Sci Bull. 2010;55(26):2974-80. doi: 10.1007/s11434-010-4067-6.
Kilik R, Bober P, Ropovik I, Beňačka R, Genči J, Nečas A, et al. Proteomic Analysis of Plasma Proteins after Low-Level Laser Therapy in Rats. Physiol Res. 2019;68(Suppl 4):S399-S404. doi: 10.33549/physiolres.934377.
Longstaff C. Measuring fibrinolysis: from research to routine diagnostic assays. J Thromb Haemost. 2018;16(4):652-62. doi: 10.1111/jth.13957
Chapin JC, Hajjar KA. Fibrinolysis and the control of blood coagulation. Blood rev. 2015;29(1):17-24. doi: 10.1016/j.blre.2014.09.003.
Rezaei-Tavirani M, Nejad MR, Arjmand B, Tavirani SR, Razzaghi M, Mansouri V. Fibrinogen Dysregulation is a Prominent Process in Fatal Conditions of COVID-19 Infection; a Proteomic Analysis. Arch Acad Emerg Med. 2021;9(1):e26. doi: 10.22037/aaem.v9i1.1128
Collen D. The plasminogen (fibrinolytic) system. Thromb. Haemost.1999;82(08):259-70. 27. Lucas MA, Fretto L, McKee P. The binding of human plasminogen to fibrin and fibrinogen. J Biol Chem. 1983;258(7):4249-56. doi:10.1016/s0021-9258(18)32614-0
Bjordal JM, Bensadoun R-J, Tunèr J, Frigo L, Gjerde K, Lopes-Martins RA. A systematic review with meta-analysis of the effect of low-level laser therapy (LLLT) in cancer therapy-induced oral mucositis. Support Care Cancer. 2011;19(8):1069-77. doi: 10.1007/s00520-011-1202-0.
De Marchi T, Junior ECPL, Bortoli C, Tomazoni SS, Lopes-Martins RÁB, Salvador M. Low- level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med Sci. 2012;27(1):231-6. doi: 10.1007/s10103-011-0955-5.
Pinheiro AL, Oliveira MG, Martins PPM, Ramalho LMP, de Oliveira MAM, Júnior AN, et al.
Biomodulatory effects of LLLT on bone regeneration. Laser ther. 2000;13(1):73-9. doi: 10.5978/islsm.13.73
Nussbaum EL, Lilge L, Mazzulli T. Effects of low-level laser therapy (LLLT) of 810 nm upon in vitro growth of bacteria: relevance of irradiance and radiant exposure. J clin laser med surg. 2003;21(5):283-90. doi: 10.15171/jlms.2020.15.
- Abstract Viewed: 397 times
- PDF Downloaded: 282 times