The Combination of Laser and Nanoparticles for Enamel Protection: An In Vitro Study Laser/NPs Protection of Enamel
Journal of Lasers in Medical Sciences,
Vol. 12 (2021),
13 February 2021
,
Page e82
Abstract
Introduction: Dental decay is caused by the fermentation of carbohydrates and the production of acids that demineralize teeth. The fermented food debris lowers the pH under 5.5, resulting in the mineral loss of teeth. Anti-decay factors are used to reduce decay rates and increase dental protection.
Methods: Fifteen sectioned teeth samples were immersed in Ag NPs solution and then irradiated with laser pulses. Structures, morphologies, chemical compositions and microhardness were studied using the Vickers micro-hardness tester, energy dispersive x-ray machine, atomic force microscope and scanning electron microscopes.
Results: Nine mature extracted human third molars, cleaned and placed in plastic molds then filled with a warm epoxy resin, were sectioned longitudinally and polished. The samples were then cleaned ultrasonically and stored in distilled water and taken immediately one by one for laser treatment. Sharper, overlapping, interconnected rods, and higher resistance against enamel decay were demonstrated with little alterations of the mineral percentages of the teeth samples.
Conclusion: The combination of laser light and silver annoparticles improved the decay resistance;
where regular inter-connected chain-like merged grains were formed. These laser-induced modifications in enamel components have reduced the lattice stress and enamel solubility and improved resistance against decay. The computer model indicated a possible prediction of the laser-treated profile prior to laser treatment.
- Dental caries; Enamel resistance; Demineralization; Nd: YAG Laser; Silver nanoparticles
How to Cite
References
Moore WEC, Moore LVH. The bacteria of periodontal diseases. Periodontology. 2000; 5(1):66–77. doi.org/10.1111/j.1600-0757.1994.tb00019.x.
Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 1986;50(4):353-380. doi:10.1128/mr.50.4.353-380.1986
Walsh LJ. The current status of laser applications in dentistry. Aust Dent J. 2003;48(3):146-55; quiz 198. doi: 10.1111/j.1834-7819.2003.tb00025.x.
Marinho VC, Worthington HV, Walsh T, Clarkson JE. Fluoride varnishes for preventing dental caries in children and adolescents. Cochrane Database Syst Rev. 2013;(7):CD002279. doi: 10.1002/14651858.CD002279.pub2.
Rosenblatt A, Stamford TC, Niederman R. Silver diamine fluoride: a caries "silver-fluoride bullet". J Dent Res. 2009;88(2):116-25. doi: 10.1177/0022034508329406.
Santos VE Jr, Vasconcelos Filho A, Targino AG, Flores MA, Galembeck A, Caldas AF Jr, Rosenblatt A. A new "silver-bullet" to treat caries in children--nano silver fluoride: a randomised clinical trial. J Dent. 2014;42(8):945-51. doi: 10.1016/j.jdent.2014.05.017.
Attin T, Hartmann O, Hilgers RD, Hellwig E. Fluoride retention of incipient enamel lesions after treatment with a calcium fluoride varnish in vivo. Arch. Oral Biol. 1995;40(3): 169-74. dio: 10.1016/0003-9969(95)98804-8.
Stern RH, Sognnaes RF. Laser inhibition of dental caries suggested by first tests in vivo. J Am Dent Assoc. 1972; 85(5):1087-90. doi: 10.14219/jada.archive.1972.0491.
Zulkifli NS, Suhaimi FM, Khairul Azhar Razab AM, Suhaimi Jaafar M, Mokhtar N. The use of Nd:YAG laser for ablation of dental material. IACSIT Press, Singapore.2015; 81(8):40-47. doi: 10.7763/IPCBEE.2015.V81.8.
Wakabayashi H, Hamba M, Matsumoto K, Tachibana H. Effect of irradiation by semiconductor laser on responses evoked in trigeminal caudal neurons by tooth pulp stimulation. Lasers Surg Med. 1993;13(6):605-10. doi: 10.1002/lsm.1900130603.
Westerman GH, Flaitz CM, Powell GL, Hicks MJ. Enamel caries initiation and progression after argon laser irradiation: in vitro argon laser systems comparison. J Clin Laser Med Surg. 2002;20(5):257-62. doi: 10.1089/10445470260420768.
Ki-Young Nam. In vitro antimicrobial effect of the tissue conditioner containing silver nanoparticles. J Adv Prosthodont. 2011; 3(1): 20–24. doi: 10.4047/jap.2011.3.1.20.
Durner J, Stojanovic M, Urcan E, Hickel R, Reichl FX. Influence of silver nano-particles on monomer elution from light-cured composites. Dent Mater. 2011;27(7):631-6. doi: 10.1016/j.dental.2011.03.003.
Chen H, Gu L, Liao B, Zhou X, Cheng L, Ren B. Advances of Anti-Caries Nanomaterials. Molecules.2020;25(21):5047. doi:10.3390/molecules25215047.
Carrouel F, Viennot S, Ottolenghi L, Gaillard C, Bourgeois D. Nanoparticles as Anti-Microbial, Anti-Inflammatory, and Remineralizing Agents in Oral Care Cosmetics: A Review of the Current Situation. Nanomaterials (Basel). 2020; 10(1):140. doi:10.3390/nano10010140.
Litvack F, Grundfest WS, Papaioannou T, Mohr FW, Jakubowski AT, Forrester JS. Role of laser and thermal ablation devices in the treatment of vascular diseases. Am J Cardiol. 1988; 61(14):81G-86G. doi: 10.1016/s0002-9149(88)80038-9.
Vahl J, Pfefferkorn G. Electron optic studies of changes in the dental hard substance caused by laser irradiation. Dtsch Zahnarztl Z. 1967; 22(2):386-94. [German]
Stern RH, Renger HL, Howell FV. Laser effects on vital dental pulps. Br Dent J 1969; 127:26-28.
Tagomori S, Morioka T. Combined effects of laser and fluoride on acid resistance of human dental enamel. Caries Res. 1989; 23(4):225-31. doi: 10.1159/000261182.
Kuroda S, Fowler BO. Compositional, structural, and phase changes in in vitro laser-irradiated human tooth enamel. Calcif Tissue Int. 1984; 36(4):361-9. doi: 10.1007/BF02405347.
Fowler BO, Kuroda S. Changes in heated and in laser-irradiated human tooth enamel and their probable effects on solubility. Calcif Tissue Int. 1986; 38(4):197-208. doi: 10.1007/BF02556711.
Kato IT, Kohara EK, Sarkis JE, Wetter NU. Effects of 960-nm diode laser irradiation on calcium solubility of dental enamel: an in vitro study. Photomed Laser Surg. 2006; 24(6):689-93. doi: 10.1089/pho.2006.24.689.
Ferreira JM, Palamara J, Phakey PP, Rachinger WA, Orams HJ. Effects of continuous-wave CO2 laser on the ultrastructure of human dental enamel. Arch Oral Biol. 1989; 34(7):551-62. doi: 10.1016/0003-9969(89)90094-0.
Kantola S, Laine E, Tarna T. Laser-induced effects on tooth structure. VI. X-ray diffraction study of dental enamel exposed to a CO2 laser. Acta Odontol Scand. 1973; 31(6):369-79. doi: 10.3109/00016357309002524.
Yamamoto K, Muhammad NA, Higuchi WI, Fox JL. The influence of dodecylamine hydrochloride on the dissolution kinetics of heat-treated hydroxyapatite samples. J Colloid and Interface Science. 1986; 110: 459-467. doi: 10.1016/0021-9797(86)90399-1
Bahar A, Tagomori S. The effect of normal pulsed Nd-YAG laser irradiation on pits and fissures in human teeth. Caries Res. 1994; 28(6):460-7. doi: 10.1159/000262021.
Nawrocka A, Łukomska-Szymańska M. Extracted human teeth and their utility in dental research. Recommendations on proper preservation: A literature review. Dent Med Probl. 2019; 56(2):185-190. doi: 10.17219/dmp/105252.
Lin CP, Lee BS, Kok SH, Lan WH, Tseng YC, Lin FH. Treatment of tooth fracture by medium energy CO2 laser and DP-bioactive glass paste: thermal behavior and phase transformation of human tooth enamel and dentin after irradiation by CO2 laser. J Mater Sci Mater Med. 2000; 11(6):373-81. doi: 10.1023/a:1008986008510.
Vander Voort G. Microindentation hardness testing. In: H. Kuhn, D. Medlin, eds. ASM Handbook. ASM International; 2000: 221–231. doi: 10.1361/asmhba0003272
Gouvêa DB, Santos NMD, Pessan JP, Jardim JJ, Rodrigues JA. Enamel Subsurface Caries-Like Lesions Induced in Human Teeth By Different Solutions: A TMR Analysis. Braz Dent J. 2020;31(2):157-163. doi: 10.1590/0103-6440202003123.
Rohanizadeh R, LeGeros RZ, Fan D, Jean A, Daculsi G. Ultrastructural properties of laser-irradiated and heat-treated dentin. J Dent Res. 1999;78(12):1829-35. doi: 10.1177/00220345990780121001.
Brandão CB, Corona SAM, Torres CP, Côrrea-Marques AA, Saraiva MCP, Borsatto MC. Efficacy of CO lasers in preventing dental caries in partially erupted first permanent molars: a randomized 18-month clinical trial. Lasers Med Sci. 2020;35(5):1185-1191. doi: 10.1007/s10103-020-02967-7.
Zach L, Cohen G. Pulp Response to externally applied heat. Oral Surg Oral Med Oral Pathol. 1965;19:515-30. doi: 10.1016/0030-4220(65)90015-0.
Hamoudi WK, Ismail RA. Welding of similar and dissimilar wires with 10 ms laser pulses. Int J Join Mat.1995; 7: 124-128.
Sato K. Relation between acid dissolution and histological alteration of heated tooth enamel. Caries Res. 1983; 17(6):490-5. doi: 10.1159/000260708.
Tagomori S, Iwase T. Ultrastructural change of enamel exposed to a normal pulsed Nd-YAG laser. Caries Res. 1995; 29(6):513-20. doi: 10.1159/000262123.
Palamara J, Phakey PP, Rachinger WA, Orams HJ. The ultrastructure of human dental enamel heat-treated in the temperature range 200 degrees C to 600 degrees C. J Dent Res. 1987;66(12):1742-7. doi: 10.1177/00220345870660120901.
Kwon YH, Kwon OW, Kim HI, Kim KH. Nd:YAG laser ablation and acid resistance of enamel. Dent Mater J. 2003; 22(3):404-11. doi: 10.4012/dmj.22.404.
Sakae T. X-ray diffraction and thermal studies of crystals from the outer and inner layers of human dental enamel. Arch Oral Biol. 1988; 33(10):707-13. doi: 10.1016/0003-9969(88)90003-9.
Charles S. Montross, Tao Wei, Ye L, Clark G, Mai YW. Laser shock processing and its effects on microstructure and properties of metal alloys: a review. Int J of Fatigue. 2002; 24(10): 1021-1036. doi: 10.1016/S0142-1123(02)00022-1.
El Assal DW, Saafan AM, Moustafa DH, Al-Sayed MA. The effect of combining laser and nanohydroxy-apatite on the surface properties of enamel with initial defects. J Clin Exp Dent. 2018; 10(5):e425-e430. doi: 10.4317/jced.54371.
Valério RA, Rocha CT, Galo R, Borsatto MC, Saraiva MC, Corona SA. CO2 laser and topical fluoride therapy in the control of caries lesions on demineralized primary enamel. Sci World J. 2015; 2015:547569. doi: 10.1155/2015/547569.
Eisner K. Prozesstechnologische Grundlagen zur Schockverfestigung von metallischen Werkstoffen mit einem kommerziellen Excimerlaser. Dissertation, Universität Erlangen, 1998. [German]
Attin T, Koidl U, Buchalla W, Schaller HG, Kielbassa AM, Hellwig E. Correlation of microhardness and wear in differently eroded bovine dental enamel. Arch Oral Biol. 1997;42(3):243-50. doi: 10.1016/0003-9969(06)00073-2.
Westerman GH, Ellis RW, Latta MA, Powell GL. An in vitro study of enamel surface microhardness following argon laser irradiation and acidulated phosphate fluoride treatment. Pediatr Dent. 2003;25(5):497-500.
Dilber E, Malkoc MA, Ozturk AN, Ozturk F. Effect of various laser irradiations on the mineral content of dentin. Eur J Dent. 2013;7(1):74-80.
Sadony, D.M., Abozaid, H.Es. Antibacterial effect of metallic nanoparticles on Streptococcus mutans bacterial strain with or without diode laser (970 nm). Bull Natl Res Cent. 2020; 44(1):1-6. doi:10.1186/s42269-019-0262-z.
Usumez S, Orhan M, Usumez A. Laser etching of enamel for direct bonding with an Er,Cr:YSGG hydrokinetic laser system. Am J Orthod Dentofacial Orthop 2002; 122(6): 649-656. doi:10.1067/MOD.2002.127294.
- Abstract Viewed: 430 times
- PDF Downloaded: 260 times