Spectroscopic characteristics of Xeloda chemodrug
Journal of Lasers in Medical Sciences,
Vol. 12 (2021),
13 February 2021
,
Page e51
Abstract
Introduction: Spectroscopic properties of Xeloda chemodrug have been studied over varying concentrations ranging between 0.001 and 10 mg/mL, using laser-induced fluorescence (LIF) spectroscopy. The alternative photoluminescence (PL) and near infrared (NIR) measurements are carried out to authenticate the obtained results by the LIF method.
Methods: The XeCl laser as the excitation coherent source with 160 mJ/pulse at 308 nm is employed for LIF measurements of the fluorophore of interest in the modular spectroscopic set-up.
Results: Xeloda as a significant chemodrug acts as a notable fluorophore. LIF, PL and NIR spectroscopy techniques are employed to investigate the spectral properties of the chemodrug in terms of concentration. The maximum LIF peak intensity of Xeloda is achieved at λmax=410.5 nm and the characteristic concentration of CP1=0.05 mg/mL. PL signals are in good agreement with the data given by the LIF measurements. The characteristic NIR spectra of Xeloda as solid evidence of chemical bonding formation attest to fluorescence quenching at the fluorophore concentration of ~ 0.2 mg/mL. Besides, the spectral shift of fluorescence signals which is obtained in terms of fluorophore concentration- demonstrating as a diagnostic marker for the purpose of optimized chemotherapy.
Conclusion: Xeloda exhibits outstanding fluorescence properties over the allowable concentration in human serum (Cmax). These characteristics could benefit the potential advantage of simultaneous laser-based imaging of cell-chemodrug interaction over in-vivo studies.
- Xeloda; Spectroscopy; LIF; PL; Spectral shift
How to Cite
References
Walko CM, & Lindley C. Xeloda: a review. Clin Ther. 2015; 27(1): 23-44. doi: 10.1016/j.clinthera.2005.01.005
Masuda N, Lee SJ, Ohtani S, Im YH, Lee ES, et al. Adjuvant capecitabine for breast cancer after preoperative chemotherapy. N Engl J Med. 2017; 376(22): 2147-2159. doi: 10.1056/NEJMoa1612645
Di Costanzo F, Ravasio R, Sobrero A, Bertetto O, Vinante O, Luppi G, Labianca R, Amadori D, Barone C, Merlano
MC and Longo F. Capecitabine versus bolus fluorouracil plus leucovorin (folinic acid) as adjuvant chemotherapy
for patients with Dukes’ C colon cancer. Clin Drug Investig. 2008; 28(10): 645-65. doi: 10.2165/00044011-200828100-00005
Cunningham D, Starling N, Rao S, Iveson T, Nicolson M, Coxon F, et al. Capecitabine and oxaliplatin for advanced esophagogastric cancer. N Engl J Med. 2008; 358(1): 36-46. doi: 10.1056/NEJMoa073149
Rehse SJ, Salimnia H, Miziolek AW. Laser-induced breakdown spectroscopy (LIBS): an overview of recent
progress and future potential for biomedical applications. J Med Eng Technol. 2012; 36(2):77-89. doi:10.3109/030919 02.2011.645946
Treado PJ, Nelson MP, inventors; ChemImage Corp, assignee. Method for Raman chemical imaging of
endogenous chemicals to reveal tissue lesion boundaries in tissue. United States patent US 6,965,793. 2005 Nov 15.
Ghasemi F, Parvin P, Motlagh NS, Amjadi A, Abachi S. Laser induced breakdown spectroscopy and acoustic
response techniques to discriminate healthy and cancerous breast tissues. Appl Opt. 2016; 55(29): 8227-35. doi:
1364/AO.55.008227
Bahreini M. Role of optical spectroscopic methods in neuro-oncological sciences. J Lasers Med Sci. 2015; 6(2):51-7.
Ghasemi F, Parvin P, Motlagh NS, Abachi S. LIF spectroscopy of stained malignant breast tissues. Biomed
Opt Express.2017; 8(2): 512-23. doi:10.1364/BOE.8.000512
Liu W, Zhang X, Liu K, Zhang S, Duan Y. Laser-induced fluorescence: Progress and prospective for in vivo cancer diagnosis. Chin Sci Bull. 2013;58(17): 2003-2016. doi:10.1007/s11434-013-5826-y
Motlagh NH, Parvin P, Ghasemi F, Atyabi F, Jelvani S, Abolhosseini S. Laser induced fluorescence spectroscopy
of chemo-drugs as biocompatible fluorophores: irinotecan, gemcitabine, and navelbine. Laser Phys Lett 2016; 13(7):075604. https://iopscience.iop.org/ article/10.1088/1612-2011/13/7/075604/meta
Motlagh NS, Parvin P, Refahizadeh M, Bavali A. Fluorescence properties of doxorubicin coupled carbon
nanocarriers. Appl Opt. 2017; 56(26):7498-503. doi:10.1364/AO.56.007498
Motlagh NS, Parvin P, Ghasemi F, Atyabi F. Fluorescenceproperties of several chemotherapy drugs: doxorubicin, paclitaxel and bleomycin. Biomed Opt Express. 2016;7(6):2400-6. doi: 10.1364/BOE.7.002400
Pahang F, Parvin P, Ghafoori-Fard H, Bavali A, Moafi A. Fluorescence properties of methylene blue molecules
coupled with metal oxide nanoparticles. OSA Continuum. 2020;3(3):688-97. doi:10.1364/OSAC.387557
Motlagh NH, Parvin P, Mirzaie ZH, Karimi R, Sanderson JH, Atyabi F. Synergistic performance of triggered drug release and photothermal therapy of MCF7 cells based on laser activated PEGylated GO+ DOX. Biomed Opt Express. 2020;11(7): 3783-94. doi: 10.1364/BOE.389261
Jahdi SA, Parvin P, Seyedi S, Jelvani S. ArF laser induced fluorescence spectroscopy of the Capecitabine chemodrug. OSA Continuum. 2020;3(6):1477-89. doi: 10.1364/OSAC.384267
Reigner B, Verweij J, Dirix L, Cassidy J, Twelves C, Allman D, Weidekamm E, Roos B, Banken L, Utoh M, Osterwalder B. Effect of food on the pharmacokinetics of capecitabine and its metabolites following oral administration in cancer patients. Clin Cancer Res. 1998; 4(4):941-8.
Albanell J, Montagut C, Jones ET, Pronk L, Mellado B, Beech J, et al. A phase I study of the safety and pharmacokinetics of the combination of pertuzumab (rhuMab 2C4) and capecitabine in patients with advanced solid tumors. Clin Cancer Res. 2008; 14(9):2726-31. doi: 10.1158/1078-0432. CCR-07-1980
Seyedi SS, Parvin P, Jafargholi A, Hashemi N, Tabatabaee SM, Abbasian A, Khorrami A. Spectroscopic properties of various blood antigens/antibodies. Biomed Opt Express.2020; 11(4): 2298-312. doi: 10.1364/BOE.387112
Seyedi S, Parvin P, Jafargholi A, Jelvani S, Shahabi M, Shahbazi M, et al. Fluorescence properties of Phycocyanin and Phycocyanin-human serum albumin complex.
Spectrochim Acta a Mol Biomol Spectrosc. 2020;118468. doi:10.1016/j.saa.2020.118468
Lakowicz JR, editor. Principles of fluorescence spectroscopy. Springer US; 2013; Apr 17.
Bavali A, Parvin P, Mortazavi SZ, Mohammadian M, Pour MM. Red/blue spectral shifts of laser-induced fluorescence emission due to different nanoparticle suspensions in various dye solutions. Appl Opt. 2014; 53(24): 5398-409. doi:10.1364/AO.53.005398
Bavali A, Parvin P, Tavassoli M, Mohebbifar MR. Angular distribution of laser-induced fluorescence emission of active dyes in scattering media. Appl Opt. 2018; 57(7): B32-8. doi: 10.1364/AO.57.000B32
Ulmschneider M, Penigault E. Non-invasive confirmation of the identity of tablets by near-infrared spectroscopy. Analysis. 2000; 28(4): 336-46. doi:10.1051/analusis:2000124
Gather M C, Yun, S. H. Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers. Nat Commun. 2014; 5(1): 1-8. doi:10.1038/ncomms6722
Mardani Kh, Parvin P, Bavali A, Moafi A, Ehtesham A. Angular study of laser-induced fluorescence emission
of hybrid media based on Stern-Volmer formalism. OSA Continuum. 2021; 4(1):15-29. doi:10.1364/OSAC.408779
B. Wardle. Principles and applications of photochemistry. John Wiley & Sons; 2009.
- Abstract Viewed: 400 times
- PDF Downloaded: 312 times