The Effect of Photobiomodulation Therapy in Different Doses on Bone Repair of Critical Size Defects in Rats: A Histomorphometric Study Different Doses of PBM on Bone Repair
Journal of Lasers in Medical Sciences,
Vol. 12 (2021),
13 Bahman 2021
,
Page e53
Abstract
Introduction: Photobiomodulation therapy (PBM) appears to induce osteogenesis and stimulate fracture repair. This paper aims to analyze the effects of the PBM at different doses on the repair of critical bone defects through histological and histomorphometric analyses.
Methods: Sixty 90-day-old adult rats (Rattus norvegicus, Albinus, Wistar) weighing approximately 300 g were used. Critical bone defects of 5 mm in diameter were performed in their calvaria. The animals were randomly separated into 5 groups: C-Blood clot, L15-PBM 15J/cm2, L30-PBM 30 J/cm2, L45-PBM 45 J/cm2, L60-PBM 60 J/cm2. Each group was subdivided according to observation periods of 30 and 60 days with 6 rats in each subgroup. Low-level gallium aluminum arsenide (GaAlAs) lasers were used at a 660 nm wavelength, 30 mW, and 0.04 cm2 in area. The PBM was applied over 5 points; 4 points of application were distributed on the edges while one point of application was located in the center of the bone defect. PBM occurred right after the procedure. In 30 and 60 days, the animals were euthanized by anesthesia overdose and the analyses were performed. The data were analyzed statistically by the ANOVA, together with the Tukey test, whose significance level was 5%.
Results: As regards the treatment factor, the highest percentage of bone neoformation was achieved by group L45-60. The group with the highest closure, despite not having a statistically significant difference with the other doses, was 45 J with only 0.49 mm between edges.
Conclusion: Thus, the present study allowed concluding that the highest percentage of bone neoformation area was achieved at 45 J/cm2 in 60 days; that is, it was significantly effective in comparison with other doses.
- Low-Level Light Therapy; Bone Regeneration; Lasers; Rats
How to Cite
References
Giannoudis PV , Atkins R. Management of long-bone non-unions. Injury. 2007;38
(Suppl 2): S1-2. doi: 10.1016/s0020-1383(07)80002-7.
Giannoudis PV, MacDonald DA, Matthews SJ, Smith RM, Furlong AJ, De Boer P. Nonunion of the femoral diaphysis. The influence of reaming and non-steroidal anti-inflammatory drugs. J Bone Joint Surg Br. 2000 ;82(5):655-8. doi:10.1302/0301-620x.82b5.9899.
Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res. 1986;(205):299-308.
Gauthier O, Müller R, von Stechow D, Lamy B, Weiss P, Bouler JM, et al. In vivo bone regeneration with injectable calcium phosphate biomaterial: a three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials. 2005;26(27):5444-53. doi: 10.1016/j.biomaterials.2005.01.072.
Hosseinpour S, Fekrazad R, Arany PR, Ye Q. Molecular impacts of photobiomodulation on bone regeneration: A systematic review. Prog Biophys Mol Biol. 2019; 149:147-159. doi:10.1016/j.pbiomolbio.2019.04.005.
Stein A, Benayahu D, Maltz L, Oron U. Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg. 2005;23(2):161-6. doi: 10.1089/pho.2005.23.161.
Oliveira P, Ribeiro DA, Pipi EF, Driusso P, Parizotto NA, Renno AC. Low level laser therapy does not modulate the outcomes of a highly bioactive glass-ceramic (Biosilicate) on bone consolidation in rats. J Mater Sci Mater Med. 2010;21(4):1379-84. doi: 10.1007/s10856-009-3945-4.
Renno AC, McDonnell PA, Crovace MC, Zanotto ED, Laakso L. Effect of 830 nm laser phototherapy on osteoblasts grown in vitro on Biosilicate scaffolds. Photomed Laser Surg. 2010;28(1):131-3. doi: 10.1089/pho.2009.2487.
Yaoita H, Orimo H, Shirai Y, Shimada T. Expression of bone morphogenetic proteins and rat distal-less homolog genes following rat femoral fracture. J BoneMiner Metab. 2000;18(2):63-70. doi: 10.1007/s007740050013.
Amid R, Kadkhodazadeh M, Ahsaie MG, Hakakzadeh A. Effect of Low Level Laser Therapy on Proliferation and Differentiation of the Cells Contributing in Bone Regeneration. J Lasers Med Sci. 2014;5(4):163-70.
Matsumoto MA, Ferino RV, Monteleone GF, Ribeiro DA. Low-level laser therapy modulates cyclo-oxygenase-2 expression during bone repair in rats. Lasers Med Sci.
;24(2):195-201. doi: 10.1007/s10103-008-0544-4.
Trelles MA, Mayayo E. Bone fracture consolidates faster with low-power laser. Lasers Surg Med. 1987;7(1):36-45. doi: 10.1002/lsm.1900070107.
Garavello-Freitas I, Baranauskas V, Joazeiro PP, Padovani CR, Dal Pai-Silva M, da Cruz-Höfling MA. Low-power laser irradiation improves histomorphometrical parameters and bone matrix organization during tibia wound healing in rats. J Photochem Photobiol B. 2003;70(2):81-9. doi: 10.1016/s1011-1344(03)00058-7.
Dörtbudak O, Haas R, Mailath-Pokorny G. Effect of low-power laser irradiation on bony implant sites. Clin Oral Implants Res. 2002;13(3):288-92. doi:10.1034/j.1600-0501.2002.130308.x.
van Breugel HH, Bär PR. Power density and exposure time of He-Ne laser irradiation are more important than total energy dose in photo-biomodulation ofhuman fibroblasts in vitro. Lasers Surg Med. 1992;12(5):528-37. doi:
1002/lsm.1900120512.
Pinheiro AL, Limeira Júnior Fde A, Gerbi ME, Ramalho LM, Marzola C, Ponzi EA, et al. Effect of 830-nm laser light on the repair of bone defects grafted with inorganic bovine bone and decalcified cortical osseus membrane. J Clin Laser Med Surg. 2003;21(5):301-6. doi: 10.1089/104454703322564523.
Lirani-Galvão AP, Jorgetti V, da Silva OL. Comparative study of how low-level laser therapy and low-intensity pulsed ultrasound affects bone repair in rats. Photomed Laser Surg. 2006;24(6):735-40. doi: 10.1089/pho.2006.24.735.
Pinheiro AL, Martinez Gerbi ME, de Assis Limeira F Jr, Carneiro Ponzi EA, Marques AM, Carvalho CM, et al. Bone repair following bone grafting hydroxyapatite guided bone regeneration and infra-red laser photobiomodulation: a histological study in a rodent model. Lasers Med Sci. 2009;24(2):234-40. doi:10.1007/s10103-008-0556-0.
Garcia VG, Sahyon AS, Longo M, Fernandes LA, Gualberto Junior EC, Novaes VC, et al. Effect of LLLT on autogenous bone grafts in the repair of critical size defects inthe calvaria of immunosuppressed rats. J Craniomaxillofac Surg. 2014;42(7):1196-202. doi: 10.1016/j.jcms.2014.02.008.
Markovic A, Kokovic V, Todorovic L. The influence of low-power laser on healing of bone defects: an experimental study. J Oral Laser Appl. 2005;5(3):169-72.
Garcia VG, da Conceição JM, Fernandes LA, de Almeida JM, Nagata MJ, Bosco AF, et al. Effects of LLLT in combination with bisphosphonate on bone healing in critical size defects: a histological and histometric study in rat calvaria. Lasers Med Sci.2013;28(2):407-14. doi: 10.1007/s10103-012-1068-5.
Coombe AR, Ho CT, Darendeliler MA, Hunter N, Philips JR, Chapple CC, e al. The effects of low level laser irradiation on osteoblastic cells. Clin Orthod Res. 2001;4(1):3-14. doi: 10.1034/j.1600-0544.2001.040102.x.
Diniz JS, Nicolau RA, de Melo Ocarino N, do Carmo Magalhães F, de Oliveira Pereira RD, Serakides R. Effect of low-power gallium-aluminum-arsenium laser therapy (830 nm) in combination with bisphosphonate treatment on osteopenic bone structure: an experimental animal study. Lasers Med Sci. 2009;24(3):347-52. doi:
1007/s10103-008-0568-9.
Bossini PS, Rennó AC, Ribeiro DA, Fangel R, Ribeiro AC, Lahoz Mde A, et al. Low level laser therapy (830nm) improves bone repair in osteoporotic rats: similar outcomes at two different dosages. Exp Gerontol. 2012;47(2):136-42. doi: 10.1016/j.exger.2011.11.005.
Calixto JC, Lima CE, Frederico L, Lima RP, Anbinder AL. The influence of local administration of simvastatin in calvarial bone healing in rats. J Craniomaxillofac Surg. 2011;39(3):215-20. doi: 10.1016/j.jcms.2010.03.009.
Torquato LC, Suárez EAC, Bernardo DV, Pinto ILR, Mantovani LO, Lemes Silva TI, et al. Bone repair assessment of critical size defects in rats treated with mineralized bovine bone (Bio-Oss®) and photobiomodulation therapy: a histomorphometric and immunohistochemical study. [published online ahead of print, 2021 Jan 5]. Lasers Med Sci. 2021;10.1007/s10103-020-03234-5. doi:10.1007/s10103-020-03234-5
Messora MR, Nagata MJ, Dornelles RC, Bomfim SR, Furlaneto FA, de Melo LG, et al. Bone healing in critical-size defects treated with platelet-rich plasma activated by two different methods. A histologic and histometric study in rat calvaria. J Periodontal Res. 2008;43(6):723-9. doi: 10.1111/j.1600-0765.2008.01084.x.
Altan AB, Bicakci AA, Avunduk MC, Esen H. The effect of dosage on the efficiency of LLLT in new bone formation at the expanded suture in rats. Lasers Med Sci. 2015;30(1):255-62. doi: 10.1007/s10103-014-1645-x.
Scalize PH, de Sousa LG, Regalo SC, Semprini M, Pitol DL, da Silva GA, et al. Low- level laser therapy improves bone formation: stereology findings for osteoporosis in rat model. Lasers Med Sci. 2015;30(5):1599-607. doi: 10.1007/s10103-015-1773-y.
Nunes CMM, Ferreira CL, Bernardo DV, Oblack GB, Longo M, Santamaria MP, et al. The influence of LLLT applied on applied on calvarial defect in rats under effect of cigarette smoke. J Appl Oral Sci. 2019;27:e20180621. doi: 10.1590/1678-7757-2018-0621.
Marques L, Holgado LA, Francischone LA, Ximenez JP, Okamoto R, Kinoshita A.New LLLT protocol to speed up the bone healing process—histometric and immunohistochemical analysis in rat calvarial bone defect. Lasers Med Sci. 2015;30(4):1225-30. doi: 10.1007/s10103-014-1580-x.
Schwartz-Filho HO, Reimer AC, Marcantonio C, Marcantonio E Jr, Marcantonio RA. Effects of low-level laser therapy (685 nm) at different doses in osteogenic cell cultures. Lasers Med Sci. 2011;26(4):539-43. doi: 10.1007/s10103-011-0902-5.
Saito S, Shimizu N. Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. Am J Orthod Dentofacial Orthop. 1997;111(5):525-32. doi: 10.1016/s0889-5406(97)70152-5.
Takeda Y. Irradiation effect of low-energy laser on alveolar bone after tooth extraction. Experimental study in rats. Int J Oral Maxillofac Surg. 1988;17(6):388-91. doi: 10.1016/s0901-5027(88)80070-5.
Jenkins PA, Carroll JD. How to report low-level laser therapy (LLLT)/photomedicine dose and beam parameters in clinical and laboratory studies. Photomed Laser Surg. 2011;29(12):785-7. doi: 10.1089/pho.2011.9895.
de Freitas LF, Hamblin MR. Proposed Mechanisms of Photobiomodulation or Low- Level Light Therapy. IEEE J Sel Top Quantum Electron. 2016;22(3):7000417. doi: 10.1109/JSTQE.2016.2561201.
Seifi M, Shafeei HA, Daneshdoost S, Mir M. Effects of two types of low-level laser wave lengths (850 and 630 nm) on the orthodontic tooth movements in rabbits. Lasers Med Sci. 2007;22(4):261-4. doi: 10.1007/s10103-007-0447-9.
Goulart CS, Nouer PR, Mouramartins L, Garbin IU, de Fátima Zanirato Lizarelli R. Photoradiation and orthodontic movement: experimental study with canines. Photomed Laser Surg. 2006;24(2):192-6. doi: 10.1089/pho.2006.24.192.
da Silva AP, Petri AD, Crippa GE, Stuani AS, Stuani AS, Rosa AL, et al. Effect of low- level laser therapy after rapid maxillary expansion on proliferation and differentiation of osteoblastic cells. Lasers Med Sci. 2012;27(4):777-83. doi:10.1007/s10103-011-0968-0.
Brassolatti P, de Andrade ALM, Bossini PS, Orth DL, Duarte FO, Dos Anjos Souza AB, et al. Photobiomodulation on critical bone defects of rat calvaria: a systematic review. Lasers Med Sci. 2018;33(9):1841-1848. doi: 10.1007/s10103-018-2653-z.
Pinheiro AL, Gerbi ME. Photoengineering of bone repair processes. Photomed Laser Surg. 2006;24(2):169-78. doi: 10.1089/pho.2006.24.169.
Ebrahimi T, Moslemi N, Rokn A, Heidari M, Nokhbatolfoghahaie H, Fekrazad R. The influence of low-intensity laser therapy on bone healing. J Dent (Tehran). 2012;9(4):238-48.
Castro Dos Santos N, Andere NMRB, Miguel MMV, Dos Santos LM, Santamaria M Jr, Mathias IF, et al. Photobiomodulation for the treatment of periodontal pockets in patients with type 2 diabetes: 1-year results of a
randomized clinical trial. Lasers Med Sci. 2019;34(9):1897-1904. doi: 10.1007/s10103-019-02799-0.
- Abstract Viewed: 532 times
- PDF Downloaded: 355 times