Low Level Laser Therapy With an 810-nm Diode Laser Affects the Proliferation and Differentiation of Premature Osteoblasts and Human Gingival Fibroblasts In Vitro LLLT 810nm effect on osteoblasts, gingival fibroblasts and co-cultures
Journal of Lasers in Medical Sciences,
Vol. 12 (2021),
13 February 2021
,
Page e33
Abstract
Introduction: Photomodulation is a promising strategy for optimizing tissue healing, but its photomodulatory effects on the synergistic cellular metabolism of gingival and bony tissues remain largely unknown. The aim of the present study was to evaluate the photomodulatory effects of a diode laser (810 nm) on osteoblasts, HGFs, and their co-cultures in vitro.
Methods: Primary cultures of HGFs, cultures of immature osteoblastic cells (MG63), and their cocultures were irradiated with a diode laser (810 nm), 15 J/cm2. Cell cultures were examined for cellular proliferation (MTT assay), viability (FDA/PI staining) after 24, 48, and 72 hours, and cell differentiation (qPCR of collagen type 1a – COL1a and alkaline phosphatase expressions - ALP) after 7 days.
Results: Photomodulation with an 810-nm diode laser increased cell proliferation at all time points. COL1a gene expression increased both in HGF and co-cultures. ALP expression was up-regulated in osteoblastic cultures, but co-cultures with fibroblasts negated this response.
Conclusion: The 810-nm diode laser positively affected cell proliferation and viability in all experimental groups. The statistically significant increased COL1a gene expression at 7 days after irradiation both in the irradiated HGF and co-cultures suggests that low-level laser therapy (LLLT) stimulated extracellular matrix (ECM) formation signaling in both cell types.
- Co-culture; Diode laser; Human gingival fibroblasts; Osteoblasts; Photomodulation; 810nm
How to Cite
References
References
Akbulut N, Kursun ES, Tumer MK, Kamburoglu K, Gulsen U. Is the 810-nm diode laser the best
choice in oral soft tissue therapy? Eur J Dent. 2013;7(2):207-11. doi:10.4103/1305-7456.110174
Luke AM, Mathew S, Altawash MM, Madan BM. Lasers: A Review with Their Applications in Oral Medicine. J Lasers Med Sci. 2019;10(4): 324-9.doi:10.15171/jlms.2019.52
Ishikawa T, Hagiwara K, Ochiya T. Generation and hepatic differentiation of human iPS cells. Methods Mol Biol. 2012; 826:103-14. doi:10.1007/978-1-61779-468-1_9.
Carroll L, Humphreys TR. LASER-tissue interactions. Clin Dermatol. 2006;24(1):2-7. doi:10.1016/j.clindermatol.2005.10.019.
Gkogkos AS, Karoussis IK, Prevezanos ID, Marcopoulou KE, Kyriakidou K, Vrotsos IA. Effect of Nd:YAG Low Level Laser Therapy on Human Gingival Fibroblasts. Int J Dent. 2015; 2015:25894. doi:10.1155/2015/258941.
Huang YY, Chen AC, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose Response. 2009;7(4):358-83, doi:10.2203/dose-response.09-027.
Brignardello-Petersen R, Carrasco-Labra A, Yanine N, Ulloa C, Araya I, Pintor F, et al. Positive association between conflicts of interest and reporting of positive results in randomized clinical trials in dentistry. J Am Dent Assoc (1939). 2013;144(10):1165-70. doi:10.14219/jada.archive.2013.0035
Almeida-Lopes L, Rigau J, Zângaro RA, Guidugli-Neto J, Jaeger MM. Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med. 2001;29(2):179-84. doi:10.1002/lsm.1107
Poon VK, Huang L, Burd A. Biostimulation of dermal fibroblast by sublethal Q-switched
Nd:YAG 532 nm laser: collagen remodeling and pigmentation. J Photochem Photobiol B. 2005;81(1):1-8. doi:10.1016/j.jphotobiol.2005.05.006
Millán JL. Alkaline Phosphatases: Structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal. 2006;2(2):335-41.doi:10.1007/s11302-005-5435-6
Zhang L, Buchet R, Azzar G. Distinct structure and activity recoveries reveal differences in metal binding between mammalian and Escherichia coli alkaline phosphatases. Biochem J. 2005;392(Pt 2):407-15. doi:10.1042/bj20050509
Heinemann DE, Siggelkow H, Ponce LM, Viereck V, Wiese KG, Peters JH. Alkaline phosphatase
expression during monocyte differentiation. Overlapping markers as a link between monocytic cells, dendritic cells, osteoclasts and osteoblasts. Immunobiology. 2000;202(1):68-81. doi:10.1016/s01712985(00)80054-616
Kreisler M, Meyer C, Stender E, Daubländer M, Willershausen-Zönnchen B, d'Hoedt B. Effect of diode laser irradiation on the attachment rate of periodontal ligament cells: an in vitro study. J Periodontol. 2001;72(10):1312-7. doi:10.1902/jop.2001.72.10.1312
Azaripour A, Azaripour M, Willershausen I, Noorden C, Willershausen B. Photodynamic Therapy has no Adverse Effects in Vitro on Human Gingival Fibroblasts and Osteoblasts. Clin Lab. 2018;64(7):1225-31. doi:10.7754/Clin.Lab.2018.180220
Ren C, McGrath C, Jin L, Zhang C, Yang Y. Effect of diode low-level lasers on fibroblasts derived from human periodontal tissue: a systematic review of in vitro studies. Lasers Med Sci. 2016;31(7):1493-510. doi:10.1007/s10103-016-2026-4
Karoussis IK, Kyriakidou K, Psarros C, Lang NP, Vrotsos IA. Nd:YAG laser radiation (1.064 nm) accelerates differentiation of osteoblasts to osteocytes on smooth and rough titanium surfaces in vitro. Clin Oral Implants Res. 2017;28(7):785-90. doi:10.1111/clr.12882
Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G. The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts--an in vitro study. Lasers Med Sci. 2012;27(2):423-30. doi:10.1007/s10103-011-0930-1
Chang B, Qiu H, Zhao H, Yang X, Wang Y, Ji T, et al. The Effects of Photobiomodulation on MC3T3-E1 Cells via 630 nm and 810 nm Light-Emitting Diode. Med Sci Monit. 2019;25:8744-52.
doi:10.12659/msm.920396
- Abstract Viewed: 614 times
- PDF Downloaded: 413 times