Biological Characteristics and Optical Reflectance Spectroscopy of Human Placenta Derived Mesenchymal Stem Cells for Application in Regenerative Medicine Biological Characteristics and Optical Reflectance Spectroscopy of Placenta Mesenchymal Stem Cells
Journal of Lasers in Medical Sciences,
Vol. 12 (2021),
13 February 2021
,
Page e18
Abstract
Introduction: The efficiency of stem cell isolation, culture, and biological characterization techniques for treatment is facing serious challenges. The purpose of this study was to provide a protocol for isolation and culture of three types of mesenchymal stem cells (MSCs) derived from the human placenta, amniotic membrane, and umbilical cord with high efficiency used for cell therapy.
Methods: During this experimental laboratory study, 10 complete placenta samples were prepared from cesarean section mothers. The protocol for isolation and culture of mesenchymal cells from the placenta tissue, umbilical cord, and amniotic membrane was enzymatically optimized. The morphological features of mesenchymal cells were investigated using an inverted microscope and their biological features were measured using flow cytometry. The differentiation potential of the cells was evaluated by measuring their differentiation capacity into osteocytes and adipocytes. The absorption and reflectance features of the cells were recorded by optical spectroscopy. Finally, the data were statistically analyzed.
Results: The expression of CD44, CD73, CD90, and CD29 markers in human placenta tissue-derived cells was significant. CD14, CD34, and CD45 markers were not expressed or were slightly expressed. These cells were highly viable and successfully differentiated into osteocytes and adipocytes. MSCs absorbed more light than visible light by showing light absorption peaks at wavelengths of about 435 and 550 nm.
Conclusion: The protocol used in this study for isolation and culture of human placenta tissue-derived MSCs had significant efficiency for the production of MSCs for use in cell therapy and tissue engineering.
- Mesenchymal stem cells, Placenta, Differentiation, Specific markers, Optical spectroscopy
How to Cite
References
Nilforoushzadeh MA, Kazemikhoo N, Mokmeli S, Zare S, Dahmardehei M, Vaghar Doost R, Momeni M, Ansari F. An Open-Label Study of Low-Level Laser Therapy Followed by Autologous Fibroblast Transplantation for Healing Grade 3 Burn Wounds in Diabetic Patients. J Lasers Med Sci. 2019;10(Suppl 1):S7-s12. doi:10.15171/jlms.2019.S2.
Bjartmar C, Kinkel RP, Kidd G, Rudick RA, Trapp BD. Axonal loss in normal-appearing white matter in a patient with acute MS. Neurology. 2001;57(7):1248-1252.
Harel NY, Strittmatter SM. Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury? Nat Rev Neurosci. 2006;7(8):603-616. doi:10.1038/nrn1957.
Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res Bull. 1999;49(6):377-391. doi:10.1016/s0361-9230(99)00072-6.
Bruder SP, Jaiswal N, Ricalton NS, Mosca JD, Kraus KH, Kadiyala S. Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res. 1998(355 Suppl):S247-256. doi:10.1097/00003086-199810001-00025.
Arinzeh TL, Peter SJ, Archambault MP, van den Bos C, Gordon S, Kraus K, Smith A, Kadiyala S. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg Am. 2003;85(10):1927-1935. doi:10.2106/00004623-200310000-00010.
Marcus AJ, Woodbury D. Fetal stem cells from extra-embryonic tissues: do not discard. J Cell Mol Med. 2008;12(3):730-742. doi:10.1111/j.1582-4934.2008.00221.x.
Guillot PV, O'Donoghue K, Kurata H, Fisk NM. Fetal stem cells: betwixt and between. Semin Reprod Med. 2006;24(5):340-347. doi:10.1055/s-2006-952149.
Guillot PV, Cui W, Fisk NM, Polak DJ. Stem cell differentiation and expansion for clinical applications of tissue engineering. J Cell Mol Med. 2007;11(5):935-944. doi:10.1111/j.1582-4934.2007.00106.x.
Zhang ZY, Teoh SH, Chong MS, Schantz JT, Fisk NM, Choolani MA, Chan J. Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells. Stem Cells. 2009;27(1):126-137. doi:10.1634/stemcells.2008-0456.
Kennea NL, Waddington SN, Chan J, O'Donoghue K, Yeung D, Taylor DL, Al-Allaf FA, Pirianov G, Themis M, Edwards AD, et al. Differentiation of human fetal mesenchymal stem cells into cells with an oligodendrocyte phenotype. Cell Cycle. 2009;8(7):1069-1079. doi:10.4161/cc.8.7.8121.
de la Fuente J, Fisk N, O’Donoghue K, Chan J, Kumar S, Roberts I. a2b1 and a4b1 integrins mediate the homing of mesenchymal stem/progenitor cells during fetal life. Haematol J. 2003;4(suppl 2):13.
Prusa AR, Hengstschlager M. Amniotic fluid cells and human stem cell research: a new connection. Med Sci Monit. 2002;8(11):Ra253-257.
Götherström C, Ringdén O, Tammik C, Zetterberg E, Westgren M, Le Blanc K. Immunologic properties of human fetal mesenchymal stem cells. Am J Obstet Gynecol. 2004;190(1):239-245. doi:10.1016/j.ajog.2003.07.022.
Stoltz JF, de Isla N, Li YP, Bensoussan D, Zhang L, Huselstein C, Chen Y, Decot V, Magdalou J, Li N, et al. Stem Cells and Regenerative Medicine: Myth or Reality of the 21th Century. Stem Cells Int. 2015;2015:734731. doi:10.1155/2015/734731.
Li N, Hua J. Interactions between mesenchymal stem cells and the immune system. Cellular and Molecular Life Sciences. 2017;74(13):2345-2360.
Vladimirovna IL, Sosunova E, Nikolaev A, Nenasheva T. Mesenchymal Stem Cells and Myeloid Derived Suppressor Cells: Common Traits in Immune Regulation. J Immunol Res. 2016;2016:7121580. doi:10.1155/2016/7121580.
Fulle S, Centurione L, Mancinelli R, Sancilio S, Manzoli FA, Di Pietro R. Stem cell ageing and apoptosis. Curr Pharm Des. 2012;18(13):1694-1717. doi:10.2174/138161212799859657.
Choudhery MS, Khan M, Mahmood R, Mehmood A, Khan SN, Riazuddin S. Bone marrow derived mesenchymal stem cells from aged mice have reduced wound healing, angiogenesis, proliferation and anti-apoptosis capabilities. Cell Biol Int. 2012;36(8):747-753. doi:10.1042/cbi20110183.
Le Blanc K, Davies LC. Mesenchymal stromal cells and the innate immune response. Immunol Lett. 2015;168(2):140-146. doi:10.1016/j.imlet.2015.05.004.
Li F, Cao J, Zhao Z, Li C, Qi F, Liu T. Mesenchymal Stem Cells Suppress Chronic Rejection in Heterotopic Small Intestine Transplant Rat Models Via Inhibition of CD68, Transforming Growth Factor- β1, and Platelet-Derived Growth Factor Expression. Exp Clin Transplant. 2017;15(2):213-221. doi:10.6002/ect.2016.0067.
Babadi M, Mohajerani E, Ataie-Fashtami L, Zand N, Shirkavand A. Quantitative Analysis of Skin Erythema Due to Laser Hair Removal: A Diffusion Optical Spectroscopy Analysis. J Lasers Med Sci. 2019;10(2):97-103. doi:10.15171/jlms.2019.16.
Shirkavand A, Farivar S, Mohajerani E, Ataie-Fashtami L, Ghazimoradi MH. Non-invasive Reflectance Spectroscopy for Normal and Cancerous Skin Cells Refractive Index Determination: An In Vitro Study. Lasers Surg Med. 2019;51(8):742-750. doi:10.1002/lsm.23095.
Pires AO, Mendes-Pinheiro B, Teixeira FG, Anjo SI, Ribeiro-Samy S, Gomes ED, Serra SC, Silva NA, Manadas B, Sousa N, et al. Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis. Stem Cells Dev. 2016;25(14):1073-1083. doi:10.1089/scd.2016.0048.
Nagamura-Inoue T, He H. Umbilical cord-derived mesenchymal stem cells: Their advantages and potential clinical utility. World J Stem Cells. 2014;6(2):195-202. doi:10.4252/wjsc.v6.i2.195.
Motedayyen H, Esmaeil N, Tajik N, Khadem F, Ghotloo S, Khani B, Rezaei A. Method and key points for isolation of human amniotic epithelial cells with high yield, viability and purity. BMC Res Notes. 2017;10(1):552. doi:10.1186/s13104-017-2880-6.
Kobolak J, Dinnyes A, Memic A, Khademhosseini A, Mobasheri A. Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods. 2016;99:62-68. doi:10.1016/j.ymeth.2015.09.016.
Martin DR, Cox NR, Hathcock TL, Niemeyer GP, Baker HJ. Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Exp Hematol. 2002;30(8):879-886. doi:10.1016/s0301-472x(02)00864-0.
Dennis JE, Charbord P. Origin and differentiation of human and murine stroma. Stem Cells. 2002;20(3):205-214. doi:10.1634/stemcells.20-3-205.
Zajdel A, Kałucka M, Kokoszka-Mikołaj E, Wilczok A. Osteogenic differentiation of human mesenchymal stem cells from adipose tissue and Wharton's jelly of the umbilical cord. Acta Biochim Pol. 2017;64(2):365-369. doi:10.18388/abp.2016_1488.
Khosravi M, Azarpira N, Shamdani S, Hojjat-Assari S, Naserian S, Karimi MH. Differentiation of umbilical cord derived mesenchymal stem cells to hepatocyte cells by transfection of miR-106a, miR-574-3p, and miR-451. Gene. 2018;667:1-9. doi:10.1016/j.gene.2018.05.028.
Sierra-Sánchez Á, Ordóñez-Luque A, Espinosa-Ibáñez O, Ruiz-García A, Arias-Santiago S. Epithelial In vitro Differentiation of Mesenchymal Stem Cells. Curr Stem Cell Res Ther. 2018;13(6):409-422. doi:10.2174/1574888x13666180501120416.
- Abstract Viewed: 617 times
- PDF Downloaded: 403 times