Combined Treatment of Photobiomodulation and Arginine on Wound Healing in an Animal Model of Delayed Healing Wound Photobiomodulation and Arginine on Chronic Wound Healing
Journal of Lasers in Medical Sciences,
Vol. 12 (2021),
13 February 2021
,
Page e40
Abstract
Introduction: Herein, the individual and combined effects of photobiomodulation (PBM) and arginine (ARG) on the wound healing course of an experimental model of a slow healing wound (ulcer) in rats were assessed.
Methods: A total of 108 male rats were divided into 6 groups: control; lower energy density (low)-PBM; arginine ointment (ARG); low-PBM+ARG; high energy density (high)-PBM; and highPBM+ARG. In each rat, one ischemic wound in the center of a bipedicle flap and one non-ischemic wound out of the flap was created. Both wounds were treated in the experimental groups. Microbial growth wound area and wound strength were assessed on days 0, 5, 10, 15, and 20 after the wound.
infliction
Results: All non-ischemic wounds closed before day 15. High-PBM+ARG and ARG significantly increased wound closure rates compared to the control group (LSD test, P=0.000, and P=0.001, respectively) on day 10. All slow healing wounds were open on day 15 but closed completely before day 20. Low-PBM+ARG and high-PBM significantly increased wound strength (stress high load, SHL) on day 10 compared to the control group (LSD test, P=0.001, and P=0.000, respectively). ARG, high-PBM, and low-PBM+ARG significantly increased wound closure rates on day 15 relative to the control group (LSD test, P=0.000, P=0.000, and P=0.001, respectively).
Conclusions: High-PBM and low-PBM+ARG have biostimulatory and antibacterial effects on slow-healing wounds, which were shown by significant increases in wound closure rates, wound strength, and inhibition of Staphylococcus aureus growth.
- Photobiomodulation, Arginine, Chronic wound, Wound closure rate, Tensiometery
How to Cite
References
Schäffer M, Witte M, Becker H-D. Models to study ischemia in chronic wounds. Int J Low Extrem Wounds. 2002;1(2):104-11. doi: 10.1177/1534734602001002005.
Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, et al. ACC/AHA 2005 practice guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): A collaborative report from the american association for vascular surgery/society for vascular surgery,* Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. circulation. 2006;113(11):e463-e654. doi: 10.1161/CIRCULATIONAHA.106.174526.
Egners A, Erdem M, Cramer T. The response of macrophages and neutrophils to hypoxia in the context of cancer and other inflammatory diseases. Mediators Inflamm. 2016;2016. doi: 10.1155/2016/2053646.
Alizadeh N, Pepper MS, Modarressi A, Alfo K, Schlaudraff K, Montandon D, et al. Persistent ischemia impairs myofibroblast development in wound granulation tissue: a new model of delayed wound healing. Wound Repair Regen. 2007 Nov-Dec;15(6):809-16. doi: 10.1111/j.1524- 475X.2007.00312.x
Sisco M, Mustoe TA. Animal models of ischemic wound healing. Toward an approximation of human chronic cutaneous ulcers in rabbit and rat. Methods Mol Med. 2003;78:55-65. doi:10.1385/1-59259-332-1:055
Nunan R, Harding KG, Martin P. Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity. Dis Model Mech. 2014 Nov;7(11):1205-13. doi:10.1242/dmm.016782.
Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 2009 Nov-Dec;17(6):763-71. doi: 10.1111/j.1524-475X.2009.00543.x.
Stechmiller JK, Childress B, Cowan L. Arginine supplementation and wound healing. Nutr Clin Pract. 2005 Feb;20(1):52-61. doi: 10.1177/011542650502000152.
Lee RH, Efron D, Tantry U, Barbul A. Nitric oxide in the healing wound: a time-course study. J Surg Res. 2001;101(1):104-8. doi: 10.1006/jsre.2001.6261.
Silva JJ, Pompeu DG, Ximenes NC, Duarte AS, Gramosa NV, Carvalho Kde M, et al. Effects of Kaurenoic Acid and Arginine on Random Skin Flap Oxidative Stress, Inflammation, and Cytokines in Rats. Aesthetic Plast Surg. 2015 Dec;39(6):971-7. doi:10.1007/s00266-015-0559-8
Verma SK, Maheshwari S, Singh RK, Chaudhari PK. Laser in dentistry: An innovative tool in modern dental practice. Natl J Maxillofac Surg. 2012;3(2):124. doi: 10.4103/0975-5950.111342.
Farivar S, Malekshahabi T, Shiari R. Biological effects of low level laser therapy. J Lasers Med Sci. 2014;5(2):58.
Dungel P, Hartinger J, Chaudary S, Slezak P, Hofmann A, Hausner T, et al. Low level light therapy by LED of different wavelength induces angiogenesis and improves ischemic wound healing. Lasers Surg Med. 2014 Dec;46(10):773-80. doi: 10.1002/lsm.22299.
Prado RP, Pinfildi CE, Liebano RE, Hochman BS, Ferreira LM. Effect of application site of low-level laser therapy in random cutaneous flap viability in rats. Photomed Laser Surg. 2009 Jun;27(3):411-6. doi:10.1089/pho.2008.2320.
Ruh AC, Frigo L, Cavalcanti M, Svidnicki P, Vicari VN, Lopes-Martins RAB, et al. Laser photobiomodulation in pressure ulcer healing of human diabetic patients: gene expression analysis of inflammatory biochemical markers. Lasers Med Sci. 2018 Jan;33(1):165-71. doi: 10.1007/s10103-017-2384-6.
Mostafavinia A, Bidram M, Gomi Avili A, Mahmanzar M, Karimifard SA, Sajadi E, et al. An improvement in acute wound healing in rats by the synergistic effect of photobiomodulation and arginine. Lab Anim Res. 2019;35:28. doi: 10.1186/s42826-019-0025-x.
Ebrahimpour-Malekshah R, Amini A, Zare F, Mostafavinia A, Davoody S, Deravi N, et al. Combined therapy of photobiomodulation and adipose-derived stem cells synergistically improve healing in an ischemic, infected, and delayed healing wound model in rats with type 1 diabetes mellitus. BMJ Open Diabetes Res Care. 2020 Feb;8(1):e001033. doi:10.1136/bmjdrc-2019-001033.
Moradi A, Zare F, Mostafavinia A, Safaju S, Shahbazi A, Habibi M, et al. Photobiomodulation plus Adipose-derived Stem Cells Improve Healing of Ischemic Infected Wounds in Type 2 Diabetic Rats. Sci Rep. 2020;10(1):1206. doi: 10.1038/s41598-020-58099-z.
Moradi A, Kheirollahkhani Y, Fatahi P, Abdollahifar MA, Amini A, Naserzadeh P, et al. An improvement in acute wound healing in mice by the combined application of photobiomodulation and curcumin-loaded iron particles. Lasers Med Sci. 2019;34(4):779-791. doi: 10.1007/s10103-018-2664-9.
Pouriran R, Piryaei A, Mostafavinia A, Zandpazandi S, Hendudari F, Amini A, et al. The Effect of Combined Pulsed Wave Low-Level Laser Therapy and Human Bone Marrow Mesenchymal Stem Cell- Conditioned Medium on Open Skin Wound Healing in Diabetic Rats. Photomed Laser Surg. 2016;34(8):345-54. doi: 10.1089/pho.2015.4020.
Barre-Sinoussi F, Montagutelli X. Animal models are essential to biological research: issues and perspectives. Future Sci OA. 2015 Nov;1(4):Fso63. doi: 10.4155/fso.15.63.
Salcido R, Popescu A, Ahn C. Animal models in pressure ulcer research. J Spinal Cord Med. 2007 Jan 1;30(2):107-16. doi: 10.1080/10790268.2007.11753921.
Gould LJ, Leong M, Sonstein J, Wilson S. Optimization and validation of an ischemic wound model. Wound Repair Regen. 2005;13(6):576-82. doi: 10.1111/j.1524-475X.2005.00080.x.
Naldaiz-Gastesi N, Goicoechea M, Alonso-Martin S, Aiastui A, Lopez-Mayorga M, Garcia-Belda P, et al. Identification and Characterization of the Dermal Panniculus Carnosus Muscle Stem Cells. Stem Cell Reports. 2016 Sep 13;7(3):411-24. doi: 10.1016/j.stemcr.2016.08.002.
Gould LJ, Leong M, Sonstein J, Wilson S. Optimization and validation of an ischemic wound model. Wound Repair Regen. 2005;13(6):576-82. doi: 10.1111/j.1524-475X.2005.00080.x.
Chen C, Schultz GS, Bloch M, Edwards PD, Tebes S, Mast BA. Molecular and mechanistic validation of delayed healing rat wounds as a model for human chronic wounds. Wound Repair Regen. 1999 Nov-Dec;7(6):486-94. doi: 10.1046/j.1524-475X.1999.00486.x
Cooper DR, Wang C, Patel R, Trujillo A, Patel NA, Prather J, et al. Human Adipose-Derived Stem Cell Conditioned Media and Exosomes Containing MALAT1 Promote Human Dermal Fibroblast Migration and Ischemic Wound Healing. Adv Wound Care. 2018 Sep 1;7(9):299-308. doi:10.1089/wound.2017.0775.
Fukui T, Kawaguchi AT, Takekoshi S, Miyasaka M, Sumiyoshi H, Tanaka R. Liposome-Encapsulated Hemoglobin Accelerates Skin Wound Healing in Diabetic dB/dB Mice. Artif Organs. 2017;41(4):319-26. doi: 10.1111/aor.12864.
Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 2012;298:229-317. doi: 10.1016/B978-0-12-394309-5.00006-7.
Frykberg RG, Banks J. Challenges in the Treatment of Chronic Wounds. Adv Wound Care. 2015 Sep 1;4(9):560-82. doi: 10.1089/wound.2015.0635.
Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res. 2009 Sep-Oct;37(5):1528-42. doi: 10.1177/147323000903700531.
Franz MG, Kuhn MA, Wright TE, Wachtel TL, Robson MC. Use of the wound healing trajectory as an outcome determinant for acute wound healing. Wound Repair Regen. 2000 Nov-Dec;8(6):511-6. doi: 10.1046/j.1524-475x.2000.00511.x.
Cirocchi R, Randolph J, Montedori A, et al. Staples versus sutures for surgical wound closure in adults. Cochrane Database Syst Rev. 2018;2018(5):CD011250. Published 2018 May 30.
doi:10.1002/14651858.CD011250.pub2
de Freitas LF, Hamblin MR. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J Sel Top Quantum Electron. 2016;22(3):7000417. doi: 10.1109/JSTQE.2016.2561201.
Carroll JD, Milward MR, Cooper PR, Hadis M, Palin WM. Developments in low level light therapy (LLLT) for dentistry. Dent Mater. 2014;30(5):465-75. doi: 10.1016/j.dental.2014.02.006.
Kouhkheil R, Fridoni M, Piryaei A, Taheri S, Chirani AS, Anarkooli IJ, et al. The effect of combined pulsed wave low-level laser therapy and mesenchymal stem cell-conditioned medium on the healing of an infected wound with methicillin-resistant Staphylococcal aureus in diabetic rats. J Cell Biochem. 2018 Jul;119(7):5788-97. doi: 10.1002/jcb.26759.
Fridoni M, Kouhkheil R, Abdollhifar MA, Amini A, Ghatrehsamani M, Ghoreishi SK, et al. Improvement in infected wound healing in type 1 diabetic rat by the synergistic effect of photobiomodulation therapy and conditioned medium. J Cell Biochem. 2018 Dec 16. doi: 10.1002/jcb.28273.
Amir A, Solomon AS, Giler S, Cordoba M, Hauben DJ. The influence of helium-neon laser irradiation on the viability of skin flaps in the rat. Br J Plast Surg. 2000 Jan;53(1):58-62. doi:10.1054/bjps.1999.3185.
Prado RP, Garcia SB, Thomazini JA, Piccinato CE. Effects of 830 and 670 nm laser on viability of random skin flap in rats. Photomed Laser Surg. 2012 Aug;30(8):418-24. doi: 10.1089/pho.2011.3042.
Prado R, Neves L, Marcolino A, Ribeiro T, Pinfildi C, Ferreira L, et al. Effect of low-level laser therapy on malondialdehyde concentration in random cutaneous flap viability. Photomed Laser Surg. 2010;28(3):379-84. doi: 10.1089/pho.2009.2535.
Cury V, Moretti AI, Assis L, Bossini P, Crusca Jde S, Neto CB, et al. Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1alpha and MMP-2. J Photochem Photobiol B. 2013 Aug 5;125:164-70. doi: 10.1016/j.jphotobiol.2013.06.004.
Cury V, Bossini PS, Fangel R, Crusca Jde S, Renno AC, Parizotto NA. The effects of 660 nm and 780 nm laser irradiation on viability of random skin flap in rats. Photomed Laser Surg. 2009;27(5):721-4. doi: 10.1089/pho.2008.2383.
Baldan CS, Masson IF, Esteves Junior I, Baldan AM, Machado AF, Casaroto RA, et al. Inhibitory effects of low-level laser therapy on skin-flap survival in a rat model. Plast Surg (Oakv). 2015;23(1):35-9. doi: 10.1177/229255031502300106.
Costa MS, Pinfildi CE, Gomes HC, Liebano RE, Arias VE, Silveira TS, et al. Effect of low-level laser therapy with output power of 30 mW and 60 mW in the viability of a random skin flap. Photomed Laser Surg. 2010 Feb;28(1):57-61. doi: 10.1089/pho.2008.2444.
Alexander JW, Supp DM. Role of Arginine and Omega-3 Fatty Acids in Wound Healing and Infection. Adv Wound Care (New Rochelle). 2014 Nov 1;3(11):682-90. doi: 10.1089/wound.2013.0469.
Farreras N, Artigas V, Cardona D, Rius X, Trias M, Gonzalez JA. Effect of early postoperative enteral immunonutrition on wound healing in patients undergoing surgery for gastric cancer. Clin Nutr. 2005; 24(1):55-65. doi: 10.1016/j.clnu.2004.07.002.
Okamoto Y, Okano K, Izuishi K, Usuki H, Wakabayashi H, Suzuki Y. Attenuation of the systemic inflammatory response and infectious complications after gastrectomy with preoperative oral arginine and omega-3 fatty acids supplemented immunonutrition. World J Surg. 2009 Sep;33(9):1815-21. doi: 10.1007/s00268-009-0140-1.
Fazli M, Bjarnsholt T, Kirketerp-Møller K, Jørgensen B, Andersen AS, Krogfelt KA, Givskov M, Tolker-Nielsen T. Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds. J Clin Microbiol. 2009 Dec;47(12):4084-9. doi: 10.1128/JCM.01395-09.
Serra R, Grande R, Butrico L, et al. Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev Anti Infect Ther. 2015;13(5):605-613. doi:10.1586/14787210.2015.1023291
- Abstract Viewed: 801 times
- PDF Downloaded: 394 times