Quantitative Autofluorescence Imaging of A375 Human Melanoma Cell Samples: A Pilot Study
Journal of Lasers in Medical Sciences,
Vol. 12 (2021),
13 February 2021
,
Page e4
Abstract
Introduction: Skin cancer is one of the most common types of malignancy worldwide. Human skin naturally contains several endogenous fluorophores, as potential sources that can emit inherent fluorescence, called intrinsic autofluorescence (AF). The melanin endogenous fluorophore in the basal cell layer of the epidermis seems to have a strong autofluorescence signal among other ones in the skin. This pilot study aimed to investigate the feasibility of the detection of autofluorescence signals in the A375 human melanoma cell line in the cell culture stage using the FluoVision optical imaging system.
Methods: The human skin melanoma cell line (A375) donated as a gift from Switzerland (University Hospital Basel) was cultured. For the imaging of the A375 human melanoma cell sample in this pilot study, the FluoVision optical imaging device (Tajhiz Afarinan Noori Parseh Co) was applied. The proposed clustering image processing code was developed based on the K-mean segmentation method, using MATLAB software (version 16).
Results: The quantification of color pixels in the color bar along with the intensity score of the autofluorescence signal ranged between 0 and 70 was written in the image processing code execution and a threshold higher than 40%, proportional to the ratio of autofluorescent cells. The percentage of the signal of A375 autofluorescent melanoma cells in the 3 studied cell samples was calculated as 3.11%±0.6.
Conclusion: This imaging method has the advantage of no need for fluorophore labels over the existing fluorescence imaging methods, and it can be regarded as one of the important choices of label-free imaging for this A375 melanoma cell line containing the intrinsic endogenous fluorophore in cell studies.
- Human Melanoma
- A375 melanoma cell line
- Autofluorescence imaging
- Segmentation
- Quantitative- image processing
How to Cite
References
Apalla Z, Lallas A, Sotiriou E, Lazaridou E, Ioannides D. Epidemiological trends in skin cancer. Dermatol Pract Concept. 2017;7(2):1-6. doi: 10.5826/dpc.0702a01.
Rajaram N, Aramil TJ, Lee K, Reichenberg JS, Nguyen TH, Tunnell JW. Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy. Appl Opt. 2010;49(2):142-152. doi: 10.1364/AO.49.000142.
Shirkavand A, Farivar S, Mohajerani E, Ataie‐Fashtami L, Ghazimoradi MH. Non‐invasive reflectance spectroscopy for normal and cancerous skin cells refractive index determination: An in vitro study. Lasers Surg Med. 2019;51(8):742-50. doi: 10.1002/lsm.23095.
Cossu A, Casula M, Cesaraccio R, Lissia A, Colombino M, Sini MC, et al. Epidemiology and genetic susceptibility of malignant melanoma in North Sardinia, Italy. Eur J Cancer Prev. 2017;26(3):263-267. doi: 10.1097/CEJ.0000000000000223.
Sini MC, Doneddu V, Paliogiannis P, Casula M, Colombino M, Manca A, et al. Genetic alterations in main candidate genes during melanoma progression. Oncotarget. 2018;9(9):8531-8541. doi: 10.18632/oncotarget.23989.
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34. doi: 10.3322/caac.21551.
American Cancer Society. Cancer Facts & Figures 2019. Atlanta: American Cancer Society; 2019.[Internet] Available from: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf
Patalay R, Talbot C, Alexandrov Y, Munro I, Neil MA, König K, et al. Quantification of cellular autofluorescence of human skin using multiphoton tomography and fluorescence lifetime imaging in two spectral detection channels. Biomed Opt Express. 2011;2(12):3295-3308. doi: 10.1364/BOE.2.003295.
König K. Clinical multiphoton tomography. J Biophotonics. 2008;1(1):13-23. doi: 10.1002/jbio.200710022.
Koenig K, Schneckenburger H. Laser-induced autofluorescence for medical diagnosis. J Fluoresc. 1994;4(1):17-40. doi: 10.1007/BF01876650.
König K. Cellular response to laser radiation in fluorescence microscopes. In: Periasamy A, editor. Methods in cellular imaging. New York: Springer; 2001. p. 236-251. doi: 10.1007/978-1-4614-7513-2_14.
Miranda-Lorenzo I, Dorado J, Lonardo E, Alcala S, Serrano AG, Clausell-Tormos J, et al. Intracellular autofluorescence: A biomarker for epithelial cancer stem cells. Nat Methods. 2014;11(11):1161-1169. doi: 10.1038/nmeth.3112.
Ebrahimi SM, Seydi M, Ebrahimi M, Hejazi M. The Fluo Vision system for fluorescence concentration imaging. Front Biomed Technol. 2019;6(4):217-220. doi: 10.18502/fbt.v6i4.2215.
Ra H, González-González E, Uddin MJ, King BL, Lee A, Ali-Khan I, et al. Detection of non-melanoma skin cancer by in vivo fluorescence imaging with fluorocoxib A. Neoplasia. 2015;17(2):201-207. doi: 10.1016/j.neo.2014.12.009.
Matthews TE, Piletic IR, Selim MA, Simpson MJ, Warren WS . Pump-Probe Imaging Differentiates Melanoma from Melanocytic Nevi. Sci Transl Med. 2011; 3(71):71ra15. doi: 10.1126/scitranslmed.3001604
Zeng H, MacAulay C, Palcic B, Mclean DI. A computerized autofluorescence and diffuse reflectance spectroanalyser system for in vivo skin studies. Phys Med Biol. 1993;38(2):231-40. doi: 10.1088/0031-9155/38/2/002.
Sharikova AV. UV laser and LED induced fluorescence spectroscopy for detection of trace amounts of organics in drinking water and water sources. 2009; Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/15
Lukinsone V, Kuzmina I, Veilande R, Plorina EV, Bliznuks D, Bolochko K, et al. Multispectral and autofluorescence RGB imaging for skin cancer diagnostics. Proceedings Volume 11065, Saratov Fall Meeting 2018: Optical and Nano-Technologies for Biology and Medicine; 110650A (2019) https://doi.org/10.1117/12.2518882.
Rodat-Boutonnet A, Naccache P, Morin A, Fabre J, Feurer B, Couderc F. A comparative study of LED-induced fluorescence and laser-induced fluorescence in SDS-CGE: Application to the analysis of antibodies. Electrophoresis. 2012;33(12):1709-1714. doi: 10.1002/elps.201200132.
Chernomyrdin NV, Lesnichaya AD, Yakovlev EV, Kudrin KG. Differentiation of basal cell carcinoma and healthy skin using multispectral modulation autofluorescence imaging : A pilot study. J Biomed Photonics Eng. 2019;5(1):010302. doi: 10.18287/JBPE19.05.010302.
Beazley-Long N, Gaston K, Harper SJ, Orlando A, Bates DO. Novel mechanisms of resistance to vemurafenib in melanoma - V600E B-Raf reversion and switching VEGF-A splice isoform expression. Am J Cancer Res. 2015;5(1):433-441.
Dratkiewicz E, Simiczyjew A, Pietraszek-Gremplewicz K, Mazurkiewicz J, Nowak D. Characterization of melanoma cell lines resistant to vemurafenib and evaluation of their responsiveness to EGFR- and MET-inhibitor treatment. Int J Mol Sci. 2020;21(1):113. doi: 10.3390/ijms21010113.
Rovati L, Docchio F, Autofluorescence methods in ophthalmology. J Biomed Opt. 2004;9(1):9-21. doi: 10.1117/1.1628241.
Dhanachandra N, Manglem K, Chanu YJ. Image Segmentation Using K-means Clustering Algorithm and Subtractive Clustering Algorithm. Procedia Comput Sci. 2015;54:764-771. doi: 10.1016/j.procs.2015.06.090.
Gullanar MH, Nassir Hs. Image Segmentation Based on Image Histogram and Clustering Technique. Int J Graph Image Proc. 2015; 5(1):1-5
Singh A, Yadav A, Rana A. K-means with three different distance metrics. Int J Comput Appl. 2013;67(10):13-17.
Schneckenburger H, Schmidt W. Luminescence techniques for monitoring of forest decline. J Photochem Photobiol B. 1992;13(2):190-193. doi: 10.1016/1011-1344(92)85058-3.
Tuite EM, Kelly JM. Photochemical interactions of methylene blue and analogues with DNA and other biological substrates. J Photochem Photobiol B Biol. 1993;21(2-3):103-124. doi: 10.1016/1011-1344(93)80173-7.
Albertus DL, Schachar IH, Zahid S, Elner VM, Demirci H, Jayasundera T. Autofluorescence quantification of benign and malignant choroidal nevomelanocytic tumors. JAMA Ophthalmol. 2013;131(8):1004-1008. doi: 10.1001/jamaophthalmol.2013.4007.
Khristoforova YA, Bratchenko IA, Artemyev DN, Myakinin OO, Moryatov AA, Kozlov SV, et al. Method of autofluorescence diagnostics of skin neoplasms in the near infrared region. J Biomed Photonics Eng. 2016;1(3):186-92. doi: 10.18287/JBPE-2015-1-3-186.
- Abstract Viewed: 753 times
- PDF Downloaded: 458 times