Treatment Parameters of Photobiomodulation in the Prevention of Non-surgical Cancer TreatmentInduced Oral Mucositis: A Review of Preclinical Studies Photobiomodulation in the Prevention of Chemotherapy-Induced Oral Mucositis
Journal of Lasers in Medical Sciences,
Vol. 12 (2021),
13 February 2021
,
Page e54
Abstract
Introduction: The most important side effect after non-surgery cancer treatment (NSCT) is oral mucositis (OM) which degrades the quality of life. Using photobiomodulation (PBM), formerly known as low-level laser therapy (LLLT), in the prevention of NSCT-induced OM was widely studied. Hence, this review evaluates the efficacy of optical treatment parameters behind the working process of PBM in preventing NSCT-induced OM in preclinical studies.
Methods: Using the PubMed, Scopus, and Embase databases, the present study systematically reviewed existing preclinical studies for optical treatment parameters of PBM in preventing NSCTinduced OM in experimental models without restriction on the year of publication.
Results: In total, 51 articles were recognized during the search of the literature, and only 16 research papers were included in this review, taking into consideration the inclusion as well as exclusion benchmarks. The reviewed studies showed that a consensus has yet to be reached on the optimal PBM treatment parameters in preventing NSCT-induced OM. However, a wavelength of 660 nm, a power density of 40 mW as well as fluence which ranged between 2 and 6 J/cm2 were mostly utilized in the included studies. Furthermore, the severity of NSCT-induced OM was reduced following PBM application with no reported severe side effects.
Conclusion: The efficacy of PBM with the associated optical parameters is a promising strategy in preventing NSCT-induced OM. However, the optimal parameters of PBM need to be investigated.
DOI: doi:10.34172/jlms.2021.54
- Low-level laser therapy (LLLT); Photobiomodulation (PBM); Oral mucositis; 5-Fluorouracil; NSCT-induced oral mucositis
How to Cite
References
Sonis ST. A biological approach to mucositis. J Support Oncol. 2004;2(1):21-32.
Sonis ST, Elting LS, Keefe D, Peterson DE, Schubert M, Hauer‐Jensen M, et al. Perspectives on cancer therapy‐induced mucosal injury: pathogenesis, measurement, epidemiology, and consequences for patients. Cancer. 2004;100(S9):1995-2025. doi:10.1002/cncr.20162
Nicolatou-Galitis O, Sarri T, Bowen J, Di Palma M, Kouloulias VE, Niscola P, et al. Systematic review of anti-inflammatory agents for the management of oral mucositis in cancer patients. Support Care Cancer. 2013;21(11):3179-3189. doi:10.1007/s00520-013-1847-y
Villa A, Sonis ST. Mucositis: pathobiology and management. Curr Opin Oncol. 2015;27(3):159-164. doi:10.1097/CCO.0000000000000180
Ala M, Jafari RM, Ala M, Agbele AT, Hejazi SM, Tavangar SM, et al. Sumatriptan alleviates radiation-induced oral mucositis in rats by inhibition of NF-kB and ERK activation, prevention of TNF-α and ROS release. Arch Oral Biol. 2020;119:104919. doi:10.1016/j.archoralbio.2020.104919
Worthington H, Clarkson J. Prevention of oral mucositis and oral candidiasis for patients with cancer treated with chemotherapy: cochrane systematic review. J Dent Edu. 2002;66(8):903-911. doi: 10.1002/j.0022-0337.2002.66.8.tb03559.x
Sacono NT, Costa CA, Bagnato VS, Abreu‐e‐Lima FC. Light‐emitting diode therapy in chemotherapy‐induced mucositis. Lasers Surg Med. 2008;40(9):625-633. doi:10.1002/lsm.20677
Stringer AM, Gibson RJ, Logan RM, Bowen JM, Yeoh AS, Hamilton J, et al. Gastrointestinal microflora and mucins may play a critical role in the development of 5-fluorouracil-induced gastrointestinal mucositis. Exp Biol Med. 2009;234(4):430-441.doi:10.3181/0810-RM-301
Pereira VB, Melo AT, Assis-Júnior EM, Wong DV, Brito GA, Almeida PR, et al. A new animal model of intestinal mucositis induced by the combination of irinotecan and 5- fluorouracil in mice. Cancer Chemother Pharmacol. 2016;77(2):323-332. doi:10.1007/s00280-015-2938-x
Ribeiro RA, Wanderley CW, Wong DV, Mota JMS, Leite CA, Souza MH, et al. Irinotecan-and 5-fluorouracil-induced intestinal mucositis: insights into pathogenesis and therapeutic perspectives. Cancer Chemother Pharmacol. 2016;78(5):881-893. doi:10.1007/s00280-016-3139-y
Schubert MM, Eduardo FP, Guthrie KA, Franquin J-C, Bensadoun R-JJ, Migliorati CA, et al. A phase III randomized double-blind placebo-controlled clinical trial to determine the efficacy of low level laser therapy for the prevention of oral mucositis in patients undergoing hematopoietic cell transplantation. Support Care Cancer. 2007;15(10):1145- 1154. doi:10.1007/s00520-007-0238-7
Silva GBL, Mendonça EF, Bariani C, Antunes HS, Silva MAG. The prevention of induced oral mucositis with low-level laser therapy in bone marrow transplantation patients: a randomized clinical trial. Photomed Laser Surg. 2011;29(1):27-31. doi:10.1089/pho.2009.2699
Chung H, Dai T, Sharma SK, Huang Y-Y, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 2012;40(2):516-533. doi:10.1007/s10439-011-0454-7
Watson T, Nussbaum E. Electro Physical Agents E-Book: Evidence-Based Practice. 13 th ed. Elsevier Health Sciences; 2020.
Hennessy M, Hamblin MR. Photobiomodulation and the brain: a new paradigm. J Opt. 2016;19(1):013003. doi:10.1088/2040-8986/19/1/013003
Migliario M, Sabbatini M, Mortellaro C, Renò F. Near infrared low‐level laser therapy and cell proliferation: The emerging role of redox sensitive signal transduction pathways. J Biophotonics. 2018;11(11):e201800025. doi:10.1002/jbio.201800025
Lopes K, Campos Velho N, Munin E. A study of low power laser on the regenerative process of Girardia tigrina (Girard, 1850)(Turbellaria; Tricladida; Dugesiidae). Braz J Bio.2009;69(2):327-332. doi:10.1590/s1519-69842009000200013
Sonis ST, Hashemi S, Epstein JB, Nair RG, Raber-Durlacher JE. Could the biological robustness of low level laser therapy (Photobiomodulation) impact its use in the management of mucositis in head and neck cancer patients. Oral Oncol. 2016;54:7-14. doi:10.1016/j.oraloncology.2016.01.005
França CM, França CM, Núñez SC, Prates RA, Noborikawa E, Faria MR, et al. Low- intensity red laser on the prevention and treatment of induced-oral mucositis in hamsters. J Photochem Photobiol B Biol. 2009;94(1):25-31. doi:10.1016/j.jphotobiol.2008.09.006
Gavish L, Perez L, Gertz SD. Low‐level laser irradiation modulates matrix metalloproteinase activity and gene expression in porcine aortic smooth muscle cells. Lasers Surg Med. 2006;38(8):779-786. doi:10.1002/lsm.20383
Lopes NNF, Plapler H, Chavantes MC, Lalla RV, Yoshimura EM, Alves MTS. Cyclooxygenase-2 and vascular endothelial growth factor expression in 5-fluorouracil- induced oral mucositis in hamsters: evaluation of two low-intensity laser protocols. Support Care Cancer. 2009;17(11):1409-1415. doi:10.1007/s00520-009-0603-9
Chen AC, Arany PR, Huang Y-Y, Tomkinson EM, Sharma SK, Kharkwal GB, et al. Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PloS one. 2011;6(7): e22453. doi:10.1371/journal.pone.0022453
Bortoletto R, Silva Nd, Zangaro R, Pacheco M, Da Matta R, Pacheco-Soares C. Mitochondrial membrane potential after low-power laser irradiation. Lasers Med Sci. 2004;18(4):204-206. doi:10.1007/s10103-003-0281-7
Bortone F, Santos H, Albertini R, Pesquero J, Costa M, Silva Jr J. Low level laser therapy modulates kinin receptors mRNA expression in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation. Int Immunopharmacol. 2008;8(2):206-210.doi:10.1016/j.intimp.2007.09.004
Farivar S, Malekshahabi T, Shiari R. Biological effects of low level laser therapy. J Lasers Med Sci. 2014;5(2):58-62.
Arany P. Craniofacial wound healing with photobiomodulation therapy: new insights and current challenges. J Dent Res. 2016;95(9):977-984. doi:10.1177/0022034516648939
Moher D, Liberati A, Tetzlaff J, Altman DG, Prisma Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi:10.1371/journal.pmed.1000097
Hamblin MR, Demidova TN. Mechanisms of low level light therapy. Mechanisms for low-light therapy. Paper presented at: International Society for Optics and Photonics. 2006; San Jose, California, United States. doi.10.1117/12.646294
Anders JJ, Ketz AK, Wu X. Basic principles of photobiomodulation and its effects at the cellular, tissue, and system levels. In: Riegel R, Godbold J,ed. Laser Therapy in Veterinary Medicine: Photobiomodulation. John Wiley & Sons; 2017: 36. doi:10.1002/9781119220190.ch5
Huang Y-Y, Sharma SK, Carroll J, Hamblin MR. Biphasic dose response in low level light therapy–an update. Dose Response. 2011;9(4):602-618. doi:10.2203/dose-response.11- 009.Hamblin
Thieme S, Ribeiro JT, Dos Santos BG, de Almeida Zieger R, Severo MLB, Martins MAT, et al. Comparison of photobiomodulation using either an intraoral or an extraoral laser on oral mucositis induced by chemotherapy in rats. Support Care Cancer. 2020;28(2):867- 876. doi:10.1007/s00520-019-04889-9
Cotomacio CC, Campos L, de Souza DN, Arana-Chavez VE, Simões A. Dosimetric study of photobiomodulation therapy in 5-FU-induced oral mucositis in hamsters. J Biomed Opt. 2017;22(1):018003. doi:10.1117/1.JBO.22.1.018003
Campos L, Cruz ÉP, Pereira FS, Arana‐Chavez VE, Simões A. Comparative study among three different phototherapy protocols to treat chemotherapy‐induced oral mucositis in hamsters. J Biophotonics. 2016;9(11-12):1236-1245. doi:10.1002/jbio.201600014
da Cruz ÉdP, Campos L, da Silva Pereira F, Magliano GC, Benites BM, Arana- Chavez VE, et al. Clinical, biochemical and histological study of the effect of antimicrobial photodynamic therapy on oral mucositis induced by 5-fluorouracil in hamsters. Photodiagnosis Photodyn. 2015;12(2):298-309. doi:10.1016/j.pdpdt.2014.12.007
Curra M, Pellicioli ACA, Kretzmann Filho NA, Ochs G, Matte Ú, Sant’Ana Filho M, et al. Photobiomodulation reduces oral mucositis by modulating NF-kB. J Biomed Opt. 2015;20(12):125008. doi:10.1117/1.JBO.20.12.125008
Bostanciklioglu M, Demiryürek Ş, Cengiz B, Demir T, Öztuzcu S, Aras MH, et al. Assessment of the effect of laser irradiations at different wavelengths (660, 810, 980, and 1064 nm) on autophagy in a rat model of mucositis. Laser Med Sci. 2015;30(4):1289-1295. doi:10.1007/s10103-015-1727-4
Freire MdRS, Freitas R, Colombo F, Valença A, Marques AMC, Sarmento VA. LED and laser photobiomodulation in the prevention and treatment of oral mucositis: experimental study in hamsters. Clin Oral Investig. 2014;18(3):1005-1013. doi:10.1007/s00784-013-1058-4
Lopez TCC, Martins MD, Pavesi VCS, Ferreira LS, Bussadori SK, Moreira MS, et al. Effect of laser phototherapy in the prevention and treatment of chemo-induced mucositis in hamsters. Braz Oral Res. 2013;27(4):342-8. doi:10.1590/S1806-83242013005000019
Lopes NNF, Plapler H, Lalla RV, Chavantes MC, Yoshimura EM, da Silva MAB, et al. Effects of low‐level laser therapy on collagen expression and neutrophil infiltrate in 5‐fluorouracil‐induced oral mucositis in hamsters. Lasers Surg Med. 2010;42(6):546-552. doi:10.1002/lsm.20920
Alinca SB, Saglam E, Kandas NO, Okcu O, Yilmaz N, Goncu B, et al. Comparison of the efficacy of low-level laser therapy and photodynamic therapy on oral mucositis in rats. Laser Med Sci. 2019;34(7):1483-1491. doi:10.1007/s10103-019-02757-w
Bayer S, Kazancioglu HO, Acar AH, Demirtas N, Kandas NO. Comparison of laser and ozone treatments on oral mucositis in an experimental model. Laser Med Sci. 2017;32(3):673-677. doi:10.1007/s10103-017-2166-1
Ottaviani G, Gobbo M, Sturnega M, Martinelli V, Mano M, Zanconati F, et al. Effect of class IV laser therapy on chemotherapy-induced oral mucositis: a clinical and experimental study. Am J Clin Pathol. 2013;183(6):1747-1757. doi:10.1016/j.ajpath.2013.09.003
Bensadoun R-J, Nair RG. Low-level laser therapy in the prevention and treatment of cancer therapy-induced mucositis: 2012 state of the art based on literature review and meta- analysis. Curr Opin Oncol. 2012;24(4):363-370. doi:10.1097/CCO.0b013e328352eaa3
Rupel K, Zupin L, Colliva A, Kamada A, Poropat A, Ottaviani G, et al. Photobiomodulation at multiple wavelengths differentially modulates oxidative stress in vitro and in vivo. Oxid Med Cell Longev. 2018;2018:1-11. doi:10.1155/2018/6510159
Amaroli A, Ferrando S, Benedicenti S. Photobiomodulation Affects Key Cellular Pathways of all Life‐Forms: Considerations on Old and New Laser Light Targets and the Calcium Issue. J Photochem Photobiol. 2019;95(1):455-459. doi:10.1111/php.13032
Houreld NN, Masha RT, Abrahamse H. Low‐intensity laser irradiation at 660 nm stimulates cytochrome c oxidase in stressed fibroblast cells. Lasers Surg Med. 2012;44(5):429-434. doi:10.1002/lsm.22027
Kim M-S, Cho Y-I, Kook M-S, Jung S-C, Hwang Y-H, Kim B-H. Effect of 660 nm light-emitting diode on the wound healing in fibroblast-like cell lines. Int J Photoenergy. 2015; ID: 916838. doi:10.1155/2015/916838
Lara RN, de Melo NS, da Guerra ENS. Macroscopic and microscopic effects of GaAIAs diode laser and dexamethasone therapies on oral mucositis induced by fluorouracil in rats. Oral Hlth Prev Dent. 2007;5(1) :63-71.
Wu S, Zhou F, Wei Y, Chen WR, Chen Q, Xing D. Cancer phototherapy via selective photoinactivation of respiratory chain oxidase to trigger a fatal superoxide anion burst. Antioxid Redox Sign. 2014;20(5):733-746. doi:10.1089/ars.2013.5229
Huang Y-Y, Chen AC-H, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose Response. 2009;7(4):358-83. doi:10.2203/dose-response.09- 027.Hamblin
Hawkins D, Abrahamse H. Phototherapy—a treatment modality for wound healing and pain relief. Afr J Biomed Res. 2007;10(2): 99-109. doi:10.4314/ajbr.v10i2.50626
Sommer AP, Pinheiro AL, Mester AR, Franke R-P, Whelan HT. Biostimulatory windows in low-intensity laser activation: lasers, scanners, and NASA's light-emitting diode array system. J Clin Laser Med Surg. 2001;19(1):29-33. doi:10.1089/104454701750066910
Corazza AV, Jorge J, Kurachi C, Bagnato VS. Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photomed Laser Surg. 2007;25(2):102-106. doi:10.1089/pho.2006.2011
Rojas JC, Gonzalez-Lima F. Low-level light therapy of the eye and brain. Eye Brain. 2011;3:49-67. doi:10.2147/EB.S21391
Lanzafame RJ, Stadler I, Kurtz AF, Connelly R, Brondon P, Olson D. Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model. Lasers Surg Med. 2007;39(6):534-542. doi:10.1002/lsm.20519
- Abstract Viewed: 736 times
- PDF Downloaded: 465 times