Physicochemical Changes of Contaminated Titanium Discs Treated With Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) Laser Irradiation or AirFlow Abrasion: An In Vitro Study Physicochemical Changes After Decontamination of Titanium Discs
Journal of Lasers in Medical Sciences,
Vol. 12 (2021),
13 February 2021
,
Page e67
Abstract
Introduction: Peri-implantitis is a common complication of dental implant treatment. A cause-and effect relationship has been previously documented between microbial plaque and peri-implantitis and implant failure. A difference has been reported in the disinfection efficacy of erbium laser irradiation and air-flow abrasion for contaminated titanium surfaces. Also, the surface changes caused by lasers and air-flow abrasion have not been well studied. Thus, the purpose of this study was to compare the surface changes of contaminated titanium discs following decontamination by erbium-doped yttrium aluminum garnet (Er: YAG) laser irradiation and air-flow abrasion.
Methods: Twenty-eight intact, sandblasted, and acid-etched (SLA) titanium discs were used. Twentyfour titanium discs were contaminated with Escherichia coli. Then, they were decontaminated by using Er: YAG laser irradiation and air-flow abrasion. Four discs remained intact. The mean and standard deviation of the contact angle and the weight percentage of aluminum, titanium, oxygen, carbon, phosphorus, and calcium were measured. Qualitative changes in surface topography of titanium discs were assessed by scanning electron microscopy (SEM).
Results: The mean weight percentage of carbon in the air-flow abrasion group (4.98%) experienced a significant reduction compared with the contaminated (positive control) group (P=0.035). The contact angles were 46.54° and 38.67° in the laser and air-flow abrasion groups respectively, which were significantly lower than the value in the positive control group (75.15°) (P ≤0.001). SEM micrographs showed no significant change in the surface area in either technique.
Conclusion: Air-flow abrasion was more successful in improving the surface characteristics of titanium discs with no alteration in surface topography or elements, compared with Er: YAG laser irradiation. Further studies regarding the safety of the Er: YAG laser for the decontamination of titanium surfaces are recommended.
- Peri-Implantitis; Lasers; Decontamination; Wettability; SEM; Energy Dispersive X-ray Spectroscopy
How to Cite
References
Mahato N, Wu X, Wang L. Management of peri-implantitis: a systematic review, 2010-2015. Springerplus. 2016; 5:105. doi:10.1186/s40064-016-1735-2.
Faveri M, Figueiredo LC, Shibli JA, Pérez-Chaparro PJ, Feres M. Microbiological diversity of peri-implantitis biofilms. Adv Exp Med Biol. 2015; 830:85-96. doi:10.1007/978-3-319-11038-7_5.
Mombelli A. Etiology, diagnosis, and treatment considerations in Peri-Implantitis. Curr opin Periodontol.
; 4:127-36.
Mombelli A, Décaillet F. The characteristics of biofilms in peri‐implant disease. J Clin Periodontol. 2011;38(S11):203-13. doi:10.1111/j.1600-051X.2010.01666.x.
Ayobian-Markazi N, Karimi M, Safar-Hajhosseini A. Effects of Er: YAG laser irradiation on wettability, surface
roughness, and biocompatibility of SLA titanium surfaces: an in vitro study. Laser Med Sci. 2015;30(2):561-6.
doi:10.1007/s10103-013-1361-y.
Persson GR, Roos‐Jansåker AM, Lindahl C, Renvert S. Microbiologic results after non‐surgical erbium‐doped:
yttrium, aluminum, and garnet laser or air‐abrasive treatment of peri‐implantitis: a randomized clinical trial. J Periodontol. 2011;82(9):1267-78. doi:10.1902/jop.2011.100660
Schwarz F, Sculean A, Romanos G, Herten M, Horn N, Scherbaum W, et al. Influence of different treatment
approaches on the removal of early plaque biofilms and the viability of SAOS2 osteoblasts grown on titanium implants. Clin Oral Investig. 2005;9(2):111-7. Doi:10.1007/s00784-
-0305-8.
Fox SC, Moriarty JD, Kusy RP. The effects of scaling a titanium implant surface with metal and plastic
instruments: an in vitro study. J Periodontol. 1990;61(8):485-90. doi:10.1902/jop.1990.61.8.485.
Jayachandran Prathapachandran NS. Management of PeriImplantitis. Dent Res J (Isfahan). 2012;9(5):516-21. doi: 10.4103/1735-3327.104867.
Schwarz F, Becker K, Renvert S. Efficacy of air polishing for the non‐surgical treatment of peri‐implant diseases: a systematic review. J Clin Periodontol. 2015;42(10):951-9.doi:10.1111/jcpe.12454.
Petersilka G, Faggion Jr CM, Stratmann U, Gerss J, Ehmke B, Haeberlein I, et al. Effect of glycine powder air‐polishing on the gingiva. J Clin Periodontol. 2008;35(4):324-32. doi:10.1111/j.1600-051X.2007.01195.x.
Schwarz F, Ferrari D, Popovski K, Hartig B, Becker J. Influence of different air-abrasive powders on cell viability at biologically contaminated titanium dental implants surfaces. J Biomed Mater Res B Appl Biomater. 2009;88(1):83-91. doi:10.1002/jbm.b.31154.
Taniguchi Y, Aoki A, Mizutani K, Takeuchi Y, Ichinose S, Takasaki AA, et al. Optimal Er: YAG laser irradiation parameters for debridement of microstructured fixture surfaces of titanium dental implants. Laser Med Sci.
;28(4):1057-68. doi:10.1007/s10103-012-1171-7.
Kreisler M, Kohnen W, Christoffers AB, Götz H, Jansen B, Duschner H, et al. In vitro evaluation of the biocompatibility of positive control implant surfaces treated with an Er: YAG laser and an air powder system. Clin Oral Implants Res. 2005;16(1):36-43. doi:10.1111/j.1600-0501.2004.01056.x.
Kamel MS, Khosa A, Tawse-Smith A, Leichter J. The use of laser therapy for dental implant surface decontamination: a narrative review of in vitro studies. Laser Med Sci. 2014;29(6):1977-85. doi:10.1007/s10103-013-1396-0.
Schwarz F, John G, Mainusch S, Sahm N, Becker J. Combined surgical therapy of peri‐implantitis evaluating
two methods of surface debridement and decontamination. A two‐year clinical follow up report. J Clin Periodontol. 2012;39(8):789-97. doi:10.1111/j.1600-051X.2012.01867.x.
Saffarpour A, Nozari A, Fekrazad R, Saffarpour A, Heibati MN, Iranparvar K. Microstructural Evaluation of Contaminated Implant Surface Treated by Laser, Photodynamic Therapy, and Chlorhexidine 2%. Int J Oral Maxillofac Implants. 2018;33(5): 1019-1026.doi:10.11607/jomi.6325.
Giannini R, Vassalli M, Chellini F, Polidori L, Dei R, Giannelli M. Neodymium: yttrium aluminum garnet laser
irradiation with low pulse energy: a potential tool for the treatment of peri‐implant disease. Clin Oral Implants Res. 2006;17(6):638-43.doi:10.1111/j.1600-0501.2006.01278.x.
Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for
rapid osseointegration. Dent Mater. 2007; 23(7):844-54. doi:10.1016/j.dental.2006.06.025.
Zhu X, Chen J, Scheideler L, Reichl R, Geis-Gerstorfer J. Effects of topography and composition of titanium
surface oxides on osteoblast responses. Biomaterials. 2004; 25(18):4087–103. doi:10.1016/j.biomaterials.2003.11.011.
Van Kooten TG, Schakenraad JM, van der Mei HC, Busscher HJ. Influence of substratum wettability on the
strength of adhesion of human fibroblasts. Biomaterials. 1992;13(13):897–904. doi:10.1016/0142-9612(92)90112-2.
Borgs C, De Coninck J, Kotecký R, Zinque M. Does the roughness of the substrate enhance wetting?. Phys Rev Lett. 1995;74(12):2292-2294. doi:10.1103/PhysRevLett.74.2292.
Strever JM, Lee J, Ealick W, Peacock M, Shelby D, Susin C, et al. Erbium, Chromium: Yttrium‐Scandium‐Gallium‐Garnet Laser Effectively Ablates Single‐Species Biofilms on Titanium Disks Without Detectable Surface Damage. J Periodontol. 2017;88(5):484-92. doi:10.1902/jop.2016.160529.
Tastepe CS, van Waas R, Liu Y, Wismeijer D. Air powder abrasive treatment as an implant surface cleaning method: a literature review. Int J Oral Maxillofac Implants.2012;27(6):1461-73.
Stübinger S, Etter C, Miskiewicz M, Homann F, Saldamli B, Wieland M, et al. Surface alterations of polished and sandblasted and acid-etched titanium implants after Er: YAG, carbon dioxide, and diode laser irradiation. Int J Oral Maxillofac Implants. 2010; 25(1):104-11.
Kim J-H, Herr Y, Chung J-H, Shin S-I, Kwon Y-H. The effect of erbium-doped: yttrium, aluminium and garnet laser irradiation on the surface microstructure and roughness of double acid-etched implants. J Periodontal Implant Sci. 2011; 41(5):234-41. doi:10.5051/jpis.2011.41.5.234.
Schwarz F, Rothamel D, Sculean A, Georg T, Scherbaum W, Becker J. Effects of an Er: YAG laser and the Vector® ultrasonic system on the biocompatibility of titanium implants in cultures of human osteoblast‐like cells. Clin. Oral Implants Res. 2003;14(6):784-92. doi:10.1046/j.0905- 7161.2003.00954.x.
Shin SI, Min HK, Park BH, Kwon YH, Park JB, Herr Y, Heo SJ, Chung JH. The effect of Er: YAG laser irradiation on the scanning electron microscopic structure and surface roughness of various implant surfaces: an in vitro study.
Laser Med Sci. 2011; 26(6):767-76. doi:10.1007/s10103-010-0819-4.
- Abstract Viewed: 494 times
- PDF Downloaded: 289 times