Optogenetic Stimulation of Primary Cardiomyocytes Expressing ChR2
Journal of Lasers in Medical Sciences,
Vol. 12 (2021),
13 February 2021
,
Page e32
Abstract
Introduction: Non-clinical cardiovascular drug safety assessment is the main step in the progress of new pharmaceutical products. Cardiac drug safety testing focuses on a delayed rectifier potassium channel block and QT interval prolongation, whereas optogenetics is a powerful technology for modulating the electrophysiological properties of excitable cells.
Methods: For this purpose, the blue light-gated ion channel, channelrhodopsin-2 (ChR2), has been introduced into isolated primary neonatal cardiomyocytes via a lentiviral vector. After being subjected to optical stimulation, transmembrane potential and intracellular calcium were assessed.
Results: Here, we generated cardiomyocytes expressing ChR2 (light-sensitive protein), that upon optical stimulation, the cardiomyocytes depolarized result from alterations of membrane voltage and intracellular calcium.
Conclusion: This cell model was easily adapted to a cell culture system in a laboratory, making this method very attractive for therapeutic research on cardiac optogenetics.
- Primary cardiomyocyte; Optogenetics; ChR2
How to Cite
References
Keating MT, Sanguinetti MC. Molecular and cellular mechanisms of cardiac arrhythmias. Cell.
;104(4):569-80. doi: 10.1016/s0092-8674(01)00243-4.
Chen L, Sampson KJ, Kass RS. Cardiac delayed rectifier potassium channels in health and
disease. Card Electrophysiol clin. 2016;8(2):307-22. doi: 10.1016/j.ccep.2016.01.004.
Agus V, Janovjak H. Optogenetic methods in drug screening: technologies and applications.
Curr Opin Biotechnol. 2017;48:8-14. doi: 10.1016/j.copbio.2017.02.006.
Pastrana E. Optogenetics: controlling cell function with light. Nat Methods. 2010;8(1):24. doi.org/10.1038/nmeth.f.323
Schneider F, Grimm C, Hegemann P. Biophysics of channelrhodopsin. Annu Rev Biophys. 2015;44:167-86. doi: 10.1146/annurev-biophys-060414-034014.
Keshmiri Neghab H, Goliaei B, Saboury AA, Esmaeeli Djavid G, Pornour M, Hong J, et al. Modulation of cardiac optogenetics by vitamin A. Biofactors. 2019;45(6):983-90. doi:10.1002/biof.1564. Epub 2019 Sep 11.
Schimmel KJ, Richel DJ, van den Brink RB, Guchelaar H-J. Cardiotoxicity of cytotoxic drugs. Cancer Treat Rev. 2004;30(2):181-91. doi: 10.1016/j.ctrv.2003.07.003.
Menna P, Salvatorelli E, Minotti G. Cardiotoxicity of antitumor drugs. Chem Res Toxicol. 2008;21(5):978-89. doi: 10.1021/tx800002r. Epub 2008 Apr 1.
Klimas A, Ambrosi CM, Yu J, Williams JC, Bien H, Entcheva E. OptoDyCE as an automated system for high-throughput all-optical dynamic cardiac electrophysiology. Nat Commun. 2016;7(1):1-12. doi.org/10.1038/ncomms11542
Dempsey GT, Chaudhary KW, Atwater N, Nguyen C, Brown BS, McNeish JD, et al.
Cardiotoxicity screening with simultaneous optogenetic pacing, voltage imaging and calcium imaging. J Pharmacol Toxicol Methods. 2016;81:240-50. doi: 10.1016/j.vascn.2016.05.003.
Lapp H, Bruegmann T, Malan D, Friedrichs S, Kilgus C, Heidsieck A, et al. Frequency-dependent drug screening using optogenetic stimulation of human iPSC-derived cardiomyocytes. Sci Rep. 2017;7(1):1-12. doi: 10.1038/s41598-020-80763-7.
Zaglia T, Pianca N, Borile G, Da Broi F, Richter C, Campione M, et al. Optogenetic determination of the myocardial requirements for extrasystoles by cell type-specific targeting of ChannelRhodopsin-2. Proc Natl Acad Sci U S A. 2015;112(32):E4495-E504. doi:10.1073/pnas.1509380112.
- Abstract Viewed: 710 times
- PDF Downloaded: 392 times