Dosage Effects of an 810 nm Diode Laser on the Proliferation and Growth Factor Expression of Human Gingival Fibroblasts Dose Effects of an 810 nm Diode on Gingival Fibroblasts
Journal of Lasers in Medical Sciences,
Vol. 12 (2021),
13 February 2021
,
Page e25
Abstract
Introduction: A substantial amount of evidence supports the positive effect of photobiomodulation on the proliferation and differentiation of various cell types. Several laser wavelengths have been used for wound healing improvement, and their actual outcome depends on the settings utilized during irradiation. However, the heterogeneous wavelengths and laser settings applied in the existing literature make it difficult to draw solid conclusions and comparison of different studies. The aim of the present study is to evaluate and compare the effects of various doses of laser energy, provided by an 810 nm diode, on human gingival fibroblasts in terms of proliferation and expression of growth factors with a pivotal role in wound healing.
Methods: Human gingival fibroblasts were cultured on plastic tissue culture and irradiated with 2, 4, 6 or 12 J/cm2. The effects of the low-level laser therapy (LLLT) using an 810 nm diode laser on growth factor expression (EGF, TGF and VEGF) were evaluated by qPCR at 72 hours and 7 days after irradiation. Cell proliferation was evaluated at 24, 48 and 72 hours after LLLT using MTT assay.
Results: Energy density of 12 J/cm2 provoked irradiated gingival fibroblasts to demonstrate significantly higher proliferation as well as higher gene expression of Col1, VEGF and EGF. LLLT positive effects were obvious up to 7 days post-irradiation.
Conclusion: LLLT with 810 nm presents beneficial effects on proliferation, collagen production and growth factor expression in human gingival fibroblast cells. The application of 12 J/cm2 can be suggested as the optimal energy density for the enhancement of the wound healing process.
- Photobiomodulation; Low-level laser therapy (LLLT); Gingival fibroblasts; Growth factors, Laser doses
How to Cite
References
Chiquet M, Katsaros C, Kletsas D. Multiple functions of gingival and mucoperiosteal fibroblasts in oral wound healing and repair. Periodontol 2000. 2015;68(1):21-40. doi:10.1111/prd.12076.
de Sousa MVP, Kawakubo M, Ferraresi C, Kaippert B, Yoshimura EM, Hamblin MR. Pain management using photobiomodulation: Mechanisms, location, and repeatability quantified by pain threshold and neural biomarkers in mice. J Biophotonics. 2018;11(7):e201700370. doi: 10.1002/jbio.201700370.
Ezzati K, Fekrazad R, Raoufi Z. The Effects of Photobiomodulation Therapy on Post- Surgical Pain. J Lasers Med Sci. 2019;10(2):79-85. doi:10.15171/jlms.2019.13.
Karoussis I, Kyriakidou K, Psarros C, Koutsilieris M, Vrotsos J. Effects and Action Mechanism of Low Level Laser Therapy (LLLT): Applications in Periodontology. Dentistry.2018;8(9): 1000514. doi:10.4172/2161-1122.1000514.
Gkogkos AS, Karoussis IK, Prevezanos ID, Marcopoulou KE, Kyriakidou K, Vrotsos IA. Effect of Nd:YAG Low Level Laser Therapy on Human Gingival Fibroblasts. Int J Dent. 2015;2015:258941. doi: 10.1155/2015/258941.
Chen H, Wang H, Li Y, Liu W, Wang C, Chen Z. Biological effects of low-level laser irradiation on umbilical cord mesenchymal stem cells. AIP Adv. 2016;6:045018. doi:10.1063/1.4948442.
Wuren Ma YF, Jinyang Zuo, Zhao Chen, Jun Yuan, Xiaoping Song. Complicated Effect of He-Ne Laser Therapy on Pro-/Anti-Inflammatory Cytokines from Serum in Rats. Am J Anim Vet Sci. 2018;6(5):88-94. doi: 10.11648/j.avs.20180605.14.
Zhou K, Ma Y, Brogan MS. Chronic and non-healing wounds: The story of vascular endothelial growth factor. Med Hypotheses. 2015;85(4):399-404. doi:10.1016/j.mehy.2015.06.017.
Basso FG, Soares DG, Pansani TN, Cardoso LM, Scheffel DL, de Souza Costa CA, et al. Proliferation, migration, and expression of oral-mucosal-healing-related genes by oral fibroblasts receiving low-level laser therapy after inflammatory cytokines challenge. Lasers Surg Med. 2016;48(10):1006-14. doi: 10.1007/s10103-012-1057-8.
Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med. 2000;342(18):1350-8. doi: 10.1056/NEJM200005043421807.
Pepper MS. Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev. 1997;8(1):21-43. doi: 10.1016/s1359- 6101(96)00048-2.
Smith PC, Martínez C, Martínez J, McCulloch CA. Role of Fibroblast Populations in Periodontal Wound Healing and Tissue Remodeling. Fron Pysiol. 2019;10:270. doi:10.3389/fphys.2019.00270.
Góralczyk K, Szymańska J, Łukowicz M, Drela E, Kotzbach R, Dubiel M, et al. Effect of LLLT on endothelial cells culture. Lasers Med Sci. 2015;30(1):273-8. doi: 10.1007/s10103-014- 1650-0.
Martignago CC, Oliveira RF, Pires-Oliveira DA, Oliveira PD, Pacheco Soares C, Monzani PS, et al. Effect of low-level laser therapy on the gene expression of collagen and
vascular endothelial growth factor in a culture of fibroblast cells in mice. Lasers Med Sci. 2015;30(1):203-8. doi: 10.1007/s10103-014-1644-y.
Ginani F, Soares DM, Barreto MP, Barboza CA. Effect of low-level laser therapy on mesenchymal stem cell proliferation: a systematic review. Lasers Med Sci.2015;30(8):2189- 94. doi: 10.1007/s10103-015-1730-9 .
Karoussis IK, Kyriakidou K, Psarros C, Lang NP, Vrotsos IA. Nd:YAG laser radiation (1.064 nm) accelerates differentiation of osteoblasts to osteocytes on smooth and rough titanium surfaces in vitro. Clin Oral Implants Res. 2017;28(7):785-90, doi: 10.1111/clr.12882.
Frozanfar A, Ramezani M, Rahpeyma A, Khajehahmadi S, Arbab HR. The Effects of Low Level Laser Therapy on the Expression of Collagen Type I Gene and Proliferation of Human Gingival Fibroblasts (Hgf3-Pi 53): in vitro Study. Iran J Basic Med Sci. 2013;16(10):1071-4.
Saghaei Bagheri H, Rasta SH, Mohammadi SM, Rahimi AAR, Movassaghpour A, Nozad Charoudeh H. Low-Level Laser Irradiation Modulated Viability of Normal and Tumor Human Lymphocytes In Vitro. J Lasers Med Sci. 2020;11(2):174-80. doi:10.34172/jlms.2020.29.
Shang D, Sun D, Shi C, Xu J, Shen M, Hu X, et al. Activation of epidermal growth factor receptor signaling mediates cellular senescence induced by certain pro-inflammatory cytokines. Aging cell. 2020;19(5):e13145, doi:10.1111/acel.13145.
Colaco A. An update on the effect of low-level laser therapy on growth factors involved in oral healing. Journal of Dental Lasers. 2018;12(2):46-9, doi:10.4103/jdl.jdl_1_18.
Penn JW, Grobbelaar AO, Rolfe KJ. The role of the TGF-β family in wound healing, burns and scarring: a review. Int J Burns Trauma.2012;2(1):18-28.
Mesquita-Ferrari RA, Martins MD, Silva JA, Jr., da Silva TD, Piovesan RF, Pavesi VC, et al. Effects of low-level laser therapy on expression of TNF-α and TGF-β in skeletal muscle during the repair process. Lasers Med Sci. 2011;26(3):335-40. doi:10.1007/s10103-010-0850-5.
Chambers RC, Leoni P, Kaminski N, Laurent GJ, Heller RA. Global expression profiling of fibroblast responses to transforming growth factor-beta1 reveals the induction of inhibitor of differentiation-1 and provides evidence of smooth muscle cell phenotypic switching. Am J Pathol. 2003;162(2):533-46. doi: 10.1016/s0002-9440(10)63847-3.
Brogi E, Wu T, Namiki A, Isner JM. Indirect angiogenic cytokines upregulate VEGF and bFGF gene expression in vascular smooth muscle cells, whereas hypoxia upregulates VEGF expression only. Circulation. 1994;90(2):649-52. doi: 10.1161/01.cir.90.2.649.
Kim K, Lee J, Jang H, Park S, Na J, Myung JK, et al. Photobiomodulation Enhances the Angiogenic Effect of Mesenchymal Stem Cells to Mitigate Radiation-Induced Enteropathy. International journal of molecular sciences. 2019;20(5):1131. doi: 10.3390/ijms20051131.
Wang L, Wu F, Liu C, Song Y, Guo J, Yang Y, et al. Low-level laser irradiation modulates the proliferation and the osteogenic differentiation of bone marrow mesenchymal stem cells under healthy and inflammatory condition. Lasers Med Sci. 2019;34(1):169-78. doi: 10.1007/s10103-018-2673-8.
Basso FG, Oliveira CF, Kurachi C, Hebling J, Costa CA. Biostimulatory effect of low- level laser therapy on keratinocytes in vitro. Lasers Med Sci. 2013;28(2):367-74. doi: 10.1007/s10103-012-1057-8.
Basso FG, Soares DG, de Souza Costa CA, Hebling J. Low-level laser therapy in 3D cell culture model using gingival fibroblasts. Lasers Med Sci. 2016;31(5):973-8. doi: 10.1007/s10103-016-1945-4.
AlGhamdi KM, Kumar A, Moussa NA. Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci. 2012;27(1):237-49. doi: 10.1007/s10103-011-0885-2.
Ustaoglu G, Ercan E, Tunali M. Low-Level Laser Therapy in Enhancing Wound Healing and Preserving Tissue Thickness at Free Gingival Graft Donor Sites: A Randomized, Controlled Clinical Study. Photomed Laser Surg. 2017;35(4):223-30. doi: 10.1089/pho.2016.4163.
Al-Shibani N. Low-intensity laser for harvesting palatal graft for the treatment of gingival recession: A systematic review. J Investig Clin Dent. 2019;10(1):e12368. doi: 10.1111/jicd.12368.
- Abstract Viewed: 611 times
- PDF Downloaded: 398 times