Use of Blue and Blue-Violet Lasers in Dentistry: A Narrative Review Blue-Violet Lasers in Dentistry
Journal of Lasers in Medical Sciences,
Vol. 12 (2021),
13 February 2021
,
Page e31
Abstract
Introduction: Blue and blue-violet diode lasers (450 and 405 nm) seem to represent an interesting approach for several clinical treatments today. The aim of this narrative review is to describe and comment on the literature regarding the utilization of blue and blue-violet lasers in dentistry.
Methods: A search for “blue laser AND dentistry” was conducted using the PubMed database, and all the papers referring to this topic, ranging from 1990 to April 2020, were analyzed in the review. All the original in vivo and in vitro studies using 450 nm or 405 nm lasers were included in this study. All the articles on the LED light, laser wavelengths other than 405 and 450 nm, and using lasers in specialties other than dentistry, as well as case reports, guideline papers, and reviews were excluded.
Results: From a total of 519 results, 47 articles met the inclusion criteria and were divided into 8 groups based on their fields of application: disinfection (10), photobiomodulation (PBM) (4), bleaching (1), resin curing (20), surgery (7), periodontics (1), endodontics (1) and orthodontics (3).
Conclusion: Blue and blue-violet diode lasers may represent new and effective devices to be used in a large number of applications in dentistry, even if further studies will be necessary to fully clarify the potentialities of these laser wavelengths
- Diode laser; Dentistry; Photobiomodulation; Oral surgery; Orthodontics
How to Cite
References
Frame JW, Morgan D, Rhys Evans PH. Tongue resection with the CO2 laser: the effects of past radiotherapy on postoperative complications. Br J Oral Maxillofac Surg. 1988 Dec;26(6):464-71. doi: 10.1016/0266-4356(88)90067-8.
Ortega-Concepción D, Cano-Durán JA, Peña-Cardelles JF, Paredes-Rodríguez VM, González- Serrano J, López-Quiles J. The application of diode laser in the treatment of oral soft tissues lesions. A literature review. J Clin Exp Dent. 2017 Jul 1;9(7): 925-928. doi: 10.4317/jced.53795.
Fornaini C, Rocca JP. Oral Laserology. Italy: ED editor, Bologna; 2015.
Fornaini C, Rocca JP, Merigo E, Meleti M, Manfredi M, Nammour S, Vescovi P. Low energy KTP laser in oral soft tissue surgery: A 52 patients clinical study. Med Oral Patol Oral Cir Bucal. 2012;17:287–291. doi: 10.4317/medoral.17428.
Kelsey WP, Blankenau RJ, Powell GL. Application of the argon laser to dentistry. Lasers Surg Med. 1991;11:495–498. doi: 10.1002/lsm.1900110602.
Fornaini C, Sozzi M, Merigo E, Pasotti P, Selleri S, Cucinotta AM. Supercontinuum source in the investigation of laser-tissue interactions: “ex vivo” study. J. Biomed 2017; 2: 12-19. doi:10.7150/jbm.17059
Masson-Meyers DS, Bumah VV, Biener G, Raicu V, Enwemeka CS. The relative antimicrobial effect of blue 405 nm LED and blue 405 nm laser on methicillin-resistant Staphylococcus aureus in vitro. Lasers Med Sci. 2015 Dec;30(9):2265-71. doi: 10.1007/s10103-015-1799-1.
Enwemeka CS. Antimicrobial blue light: an emerging alternative to antibiotics. Photomed Laser Surg. 2013 Nov;31(11):509-11. doi: 10.1089/pho.2013.9871.
Biener G, Masson-Meyers DS, Bumah VV, Hussey G, Stoneman MR, Enwemeka CS, Raicu V. Blue/violet laser inactivates methicillin-resistant Staphylococcus aureus by altering its transmembrane potential. J Photochem Photobiol B. 2017 May; 170:118-124. doi:10.1016/j.jphotobiol.2017.04.002.
de Sousa NT, Santos MF, Gomes RC, Brandino HE, Martinez R, de Jesus Guirro RR. Blue Laser Inhibits Bacterial Growth of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Photomed Laser Surg. 2015 May;33(5):278-82. doi: 10.1089/pho.2014.3854.
Merigo E, Conti S, Ciociola T, Fornaini C, Polonelli L, Lagori G, Manfredi M, Vescovi P. Effect of different wavelengths and dyes on Candida albicans: In vivo study using Galleria mellonella as an experimental model. Photodiagnosis Photodyn Ther. 2017 Jun; 18:34-38. doi:10.1016/j.pdpdt.2017.01.181.
Merigo E, Conti S, Ciociola T, Manfredi M, Vescovi P, Fornaini C. Antimicrobial Photodynamic Therapy Protocols on Streptococcus mutans with Different Combinations of Wavelengths and Photosensitizing Dyes. Bioengineering (Basel). 2019 May 10;6(2). pii: E42. doi:10.3390/bioengineering6020042.
Merigo E, Chevalier M, Conti S, Ciociola T, Fornaini C, Manfredi M, Vescovi P, Doglio A: Antimicrobial effect on Candida albicans biofilm by application of different wavelengths and dyes and the synthetic killer decapeptide KP. Laser Therapy, 2019, Sep 30;28(3):180-186. doi:10.5978/islsm.28_19-OR-14.
Azizi A, Shohrati P, Goudarzi M, Lawaf S, Rahimi A. Comparison of the Effect of Photodynamic Therapy with Curcumin and Methylene Blue on Streptococcus mutans Bacterial Colonies. Photodiagnosis Photodyn Ther. 2019 Jun 5. pii: S1572-1000(19)30158-9. doi:10.1016/j.pdpdt.2019.06.002.
Rupel K, Zupin L, Ottaviani G, Bertani I, Martinelli V, Porrelli D, Vodret S, Vuerich R, Passos da Silva D, Bussani R, Crovella S, Parsek M, Venturi V, Di Lenarda R, Biasotto M, Zacchigna S. Blue laser light inhibits biofilm formation in vitro and in vivo by inducing oxidative stress. NPJ Biofilms Microbiomes. 2019 Oct 9; 5:29. doi: 10.1038/s41522-019-0102-9
Zupin L, Caracciolo I, Tricarico PM, Ottaviani G, D'Agaro P, Crovella S. Antiviral properties of blue laser in an in vitro model of HSV-1 infection. Microbiol Immunol. 2018 May 11. doi: 10.1111/1348-0421.12600. doi: 10.1089/pho.2015.9848.
Anders JJ, Lanzafame RJ, Arany PR. Low-Level Light/Laser therapy versus Photobiomodulation Therapy. Photomed Laser Surg. 2015; 33:183-4.
Tunér J, Hode L. Laser therapy in dentistry and medicine. 1996. Prima books, Sweden.
Kushibiki T, Awazu K. Controlling osteogenesis and adipogenesis of mesenchymal stromal cells by regulating a circadian clock protein with laser irradiation. Int J Med Sci. 2008; 5(6):319-26. doi: 10.7150/ijms.5.319.
Kushibiki T, Awazu K. Blue laser irradiation enhances extracellular calcification of primary mesenchymal stem cells. Photomed Laser Surg. 2009 Jun; 27(3):493-8. doi:10.1089/pho.2008.2343.
Kushibiki T, Hirasawa T, Okawa S, Ishihara M. Blue laser irradiation generates intracellular reactive oxygen species in various types of cells. Photomed Laser Surg. 2013 Mar;31(3):95-104. doi: 10.1089/pho.2012.3361.
Mikami R, Mizutani K, Aoki A, Tamura Y, Aoki K, Izumi Y. Low-level ultrahigh-frequency and ultrashort-pulse blue laser irradiation enhances osteoblast extracellular calcification by upregulating proliferation and differentiation via transient receptor potential vanilloid 1. Lasers Surg Med. 2018 Apr; 50(4):340-352. doi: 10.1002/lsm.22775.
Fisher G. The bleaching of discolored teeth with H2O2. Dent. Cosmos. 1911; 53:246–247.
Fornaini C, Lagori G, Merigo E, Meleti M, Manfredi M, Guidotti R, Serraj A, Vescovi P. Analysis of shade, temperature and hydrogen peroxide concentration during dental bleaching: in vitro study with the KTP and diode lasers. Lasers Med Sci. 2013 Jan; 28(1):1-6. doi:10.1007/s10103-011-1037- 4.
Cassoni A, Rodrigues JA. Argon laser: a light source alternative for photopolymerization and in- office tooth bleaching. Gen Dent. 2007 Sep-Oct; 55(5):416-9. Review.
Tano E, Otsuki M, Kato J, Sadr A, Ikeda M, Tagami J. Effects of 405 nm diode laser on titanium oxide bleaching activation. Photomed Laser Surg. 2012 Nov;30(11):648-54. doi: 10.1089/pho.2012.3273. doi: 10.1089/pho.2012.3273
Meniga A, Tarle Z, Ristic M, Sutalo J, Pichler G. Pulsed blue laser curing of hybrid composite resins. Biomaterials. 1997 Oct;18(20):1349-54.
Benedicenti A, Guainazzo G, Gherlone EF, Martino AR, Guarneri L, Rinaldi F. Use of light emitted from an argon laser for the polymerization of composites usually polymerized by UV or halogen light. Immediate advantages and long-term clinical aspects. Parodontol Stomatol (Nuova). 1984 Sep-Dec;23(3):105-7.
Benedicenti A, Daneo M, Verrando M, Guarneri L, Martino AR, Gherlone EF. Evaluation of water absorption by a composite, Durafill, polymerized with argon laser light, in relation to normal polymerization. Parodontol Stomatol (Nuova). 1984 Sep-Dec;23(3):27-9.
Benedicenti A, Daneo M, Verrando M, Guarneri L, Martino AR, Gherlone EF. Evaluation of the hardness of a composite, Durafill, polymerized with argon laser light, in relation to normal polymerization. Parodontol Stomatol (Nuova). 1984 Sep-Dec; 23(3):39-42.
Benedicenti A, Daneo M, Verrando M, Guarneri L, Martino AR, Gherlone EF. Evaluation of the wear of a composite, Durafill, polymerized with argon laser light, in relation to normal polymerization. Parodontol Stomatol (Nuova). 1984 Sep-Dec;23(3):51-3.
Benedicenti A, Verrando M, Daneo M, Sommazzi N, Coriandolo D, Zanelli F. Experimental protocol for the application of laser light for the polymerization of composites--controlled with 904 nm. laser light--inducted with argon laserlight (isocentric polymerization). Parodontol Stomatol (Nuova). 1984 Sep-Dec;23(3):63-8.
Séverin C. The effect of argon laser radiation on the polymerization of photocomposites: bonding of orthodontic brackets. J Biomater Dent. 1985 Apr;1(2):111-2, 161-5.
Kelsey WP 3rd, Blankenau RJ, Powell GL, Barkmeier WW, Cavel WT, Whisenant BK. Enhancement of physical properties of resin restorative materials by laser polymerization. Lasers Surg Med. 1989;9(6):623-7. doi: 10.1002/lsm.1900090613
Powell GL, Kelsey WP, Blankenau RJ, Barkmeier WW. The use of an argon laser for polymerization of composite resin. J Esthet Dent. 1989 Jan;1(1):34-7. doi: 10.1111/j.1708- 8240.1989.tb01035.x.
Blankenau RJ, Powell GL, Kelsey WP, Barkmeier WW. Post polymerization strength values of an argon laser cured resin. Lasers Surg Med. 1991;11(5):471-4. doi: 10.1002/lsm.1900110513.
Blankenau RJ, Kelsey WP, Powell GL, Shearer GO, Barkmeier WW, Cavel WT. Degree of composite resin polymerization with visible light and argon laser. Am J Dent. 1991 Feb; 4(1):40-2.
Kelsey WP, Blankenau RJ, Powell GL, Barkmeier WW, Stormberg EF. Power and time requirements for use of the argon laser to polymerize composite resins. J Clin Laser Med Surg. 1992 Aug;10(4):273-8. doi: 10.1089/clm.1992.10.273
Calura G, Nonato M, Franchi M, Pagnanelli M. Effect of laser light on polymerization of composite materials]. Minerva Stomatol. 1989 Apr; 38(4):395-403.
Shanthala BM, Munshi AK. Laser vs visible-light cured composite resin: an in vitro shear bond study. J Clin Pediatr Dent. 1995 Winter;19 (2):121-5.
Fleming MG, Maillet WA. Photopolymerization of composite resin using the argon laser. J Can Dent Assoc. 1999 Sep;65(8):447-50. Review.
Pahlevan A, Tabatabaei MH, Arami S, Valizadeh S. Effect of LED and Argon Laser on Degree of Conversion and Temperature Rise of Hybrid and Low Shrinkage Composite Resins. Open Dent J. 2016 Sep 30; 10:538-545. doi: 10.2174/1874210601610010538
Fornaini C, Lagori G, Merigo E, Rocca JP, Chiusano M, Cucinotta A. 405 nm diode laser, halogen lamp and LED device comparison in dental composites cure: an "in vitro" experimental trial. Laser Ther. 2015 Dec 30; 24(4):265-74. doi: 10.5978/islsm.15-OR-16.
Yun DI, Ku RM, Son SA, Park JK, Ko CC, Kim HI, Kwon YH. Influence of a blue DPSS laser on specimen thickness of composite resins. Photomed Laser Surg. 2012 Sep;30(9):536-42. doi: 10.1089/pho.2012.3231.
Baek DM, Park JK, Son SA, Ko CC, Garcia-Godoy F, Kim HI, Kwon YH. Mechanical properties of composite resins light-cured using a blue DPSS laser. Lasers Med Sci. 2013 Feb;28(2):597-604. doi: 10.1007/s10103-012-1117-0.
Jang CM, Seol HJ, Kim HI, Kwon YH. Effect of different blue light-curing systems on the polymerization of nanocomposite resins. Photomed Laser Surg. 2009 Dec;27(6):871-6. doi: 10.1089/pho.2008.2322.
Drost T, Reimann S, Frentzen M, Meister J. Effectiveness of photopolymerization in composite resins using a novel 445-nm diode laser in comparison to LED and halogen bulb technology. Lasers Med Sci. 2019 Jun; 34(4):729-736. doi: 10.1007/s10103-018-2651-1.
Fornaini C, Merigo E, Rocca JP, Lagori G, Raybaud H, Selleri S, Cucinotta A: 450 nm Blue Laser and Oral Surgery: Preliminary ex vivo Study. J Contemp Dent Pract. 2016 Oct 1;17(10):795- 800. doi: 10.5005/jp-journals-10024-1933
Braun A, Kettner M, Berthold M, Wenzler JS, Heymann PGB, Frankenberger R. Efficiency of soft tissue incision with a novel 445-nm semiconductor laser. Lasers Med Sci. 2018 Jan;33(1):27-33. doi: 10.1007/s10103-017-2320-9.
Gobbo M, Bussani R, Perinetti G, Rupel K, Bevilaqua L, Ottaviani G, Biasotto M: Blue diode laser versus traditional infrared diode laser and quantic molecular resonance scalpel: clinical and histological findings after excisional biopsy of benign oral lesions. J. Biomed. Opt. 22(12), 121602 (2017), doi: 10.1117/1.JBO.22.12.121602
Biasotto M, Ottaviani G: Le lunghezze d’onda in chirurgia: l’impiego del laser blu. Dental Cadmos 2018; 86(5)
Fornaini C, Rocca JP, Merigo E. 450 nm diode laser: A new help in oral surgery. World J Clin Cases. 2016 Sep 16;4(9):253-7. doi: 10.12998/wjcc.v4.i9.253.
Matys J, Flieger R, Dominiak M. Effect of diode lasers with wavelength of 445 and 980 nm on a temperature rise when uncovering implants for second stage surgery: An ex-vivo study in pigs. Adv Clin Exp Med. 2017 Jul; 26(4):687-693. doi: 10.17219/acem/68943.
Reichelt J, Winter J, Meister J, Frentzen M, Kraus D. A novel blue light laser system for surgical applications in dentistry: evaluation of specific laser-tissue interactions in monolayer cultures. Clin Oral Investig. 2017 May; 21(4):985-994. doi: 10.1007/s00784-016-1864-6.
Böcher S, Wenzler JS, Falk W, Braun A. Comparison of different laser-based photochemical systems for periodontal treatment. Photodiagnosis Photodyn Ther. 2019 Sep; 27:433-439. doi: 10.1016/j.pdpdt.2019.06.009.
Weichman JA, Johnson EM. Laser use in endodontics. A preliminary investigation. Oral Surg Oral Med Oral Pathol. 1971. Mar;31(3):416–20. doi:10.1016/0030-4220(71)90164-2
Kimura Y, Wilder-Smith P, Matsumoto K. Lasers in endodontics: a review. Int Endod J. 2000. May;33(3):173–85. doi:10.1046/j.1365-2591.2000.00280.x 31.
Stabholz A, Zeltser R, Sela M, Peretz B, Moshonov J, Ziskind D, et al. The use of lasers in dentistry: principles of operation and clinical applications. Compend Contin Educ Dent. 2003. Dec; 24(12):935–48
Anić I, Tachibana H, Masumoto K, Qi P. Permeability, morphologic and temperature changes of canal dentine walls induced by Nd: YAG, CO2 and argon lasers. Int Endod J. 1996 Jan;29(1):13-22. doi: 10.1111/j.1365-2591.1996.tb01354.x.
Stein S, Wenzler J, Hellak A, Schauseil M, Korbmacher-Steiner H, Braun A. Intrapulpal Temperature Increases Caused by 445-nm Diode Laser-Assisted Debonding of Self-Ligating Ceramic Brackets During Simulated Pulpal Fluid Circulation. Photomed Laser Surg. 2018 Apr;36(4):185-190. doi: 10.1089/pho.2017.4356.
Stein S, Hellak A, Schauseil M, Korbmacher-Steiner H, Braun A. Effects of 445-nm Diode Laser- Assisted Debonding of Self-Ligating Ceramic Brackets on Shear Bond Strength. Photomed Laser Surg. 2018 Jan;36(1):31-36. doi:36
Knaup T, Korbmacher-Steiner H, Braun A, Wenzler JS, Knaup I, Stein S. Effects of 445-nm Diode Laser-Assisted Debonding of Metallic Brackets on Shear Bond Strength and Enamel Surface Morphology. Photobiomodul Photomed Laser Surg. 2020 Mar;38(3):160-166. doi: 10.1089/photob.2019.4704.
- Abstract Viewed: 1209 times
- PDF Downloaded: 796 times