Cancerous Tissue Diagnosis by LIF Spectroscopy Derived From Body-Compatible Fluorophores
Journal of Lasers in Medical Sciences,
Vol. 12 (2021),
13 February 2021
,
Page e10
Abstract
Introduction: The laser-induced fluorescence (LIF) method as molecular emission spectroscopy is used to diagnose cancerous tissues. According to the previous reports, the red-shift in the fluorescence spectrum from Rhodamine 6G (Rd6G)-stained cancerous tissues compared to healthy ones impregnated with the same dye provides the feasibility for diagnosis. In this paper, we have employed the LIF emissions as a diagnostic method to distinguish between cancerous and healthy tissues infiltrated by a body-compatible fluorophore to avoid the toxicity and hazard of Rd6G dye.
Methods: Biological tissue specimens are stained with sodium fluorescein (NaFl) dye and then irradiated by the blue CW diode laser (405 nm) to examine the spectral properties that are effective in detecting cancerous tissues.
Results: The spectral shift and the intensity difference of fluorescence are keys to diagnosing in vitro cancerous breast, colon, and thyroid tissues for clinical applications. The notable tubular densities in the breast and colon tissues and the space between the papillae in the thyroid ones cause the cancerous tissues to be prominently heterogeneous, providing numerous micro-cavities and thus more room for dye molecules.
Conclusion: Here, we have assessed the spectral shift and intensity difference of fluorescence as a diagnostic method to distinguish between cancerous and healthy tissues for clinical applications.
- Laser-induced fluorescence; Diagnosis; Cancerous tissues; Body-compatible dye; Sodium fluorescein
How to Cite
References
Hosseini Motlagh NS, Parvin P, Ghasemi F, Atyabi F. Fluorescence properties of several chemotherapy drugs: doxorubicin, paclitaxel, and bleomycin. Biomed Opt Express. 2016;7(6):2400-2406. doi: 10.1364/BOE.7.002400.
Surmacki J, Musial J, Kordek R, Abramczyk H. Raman imaging at biological interfaces: applications in breast cancer diagnosis. Mol Cancer. 2013;12(1):48. doi: 10.1186/1476-4598-12-48.
Ghasemi F, Parvin P, Hosseini Motlagh NS, Amjadi A, Abachi S. Laser-induced breakdown spectroscopy and acoustic response techniques to discriminate healthy and cancerous breast tissues. Appl Opt. 2016;55(29):8227-8235. doi: 10.1364/AO.55.008227.
Ramanujam N. Fluorescence spectroscopy of neoplastic and non-neoplastic tissues. Neoplasia. 2000;2(1-2):89-117. doi: 10.1038/sj.neo.7900077.
Ghasemi F, Parvin P, Hosseini Motlagh NS, Keraji M, Hadavand Mirzaee F, Bavali A. Optical spectroscopic methods to discriminate in-vitro Hodgkin cancerous and normal tissues. Int J Opt Photonics. 2015;9(2):65-72. doi: 10.1364/BODA.2015.JT3A.40.
Salman M, Mohammad Hosein MA, Mohammad N. Nonlinear optical investigation of normal ovarian cells of animal and cancerous ovarian cells of human in-vitro. Optik. 2016;127(8):3867-3870. doi: 10.1016/j.ijleo.2016.01.072.
Palmer GM, Keely PJ, Breslin TM, Ramanujam N. Autofluorescence spectroscopy of normal and malignant human breast cell lines. Photochem Photobiol. 2003;78(5):462-9. doi: 10.1562/0031-8655(2003)078<0462:asonam>2.0.co;2.
Galmed AH, Elshemey WM. The diagnostic capability of laser-induced fluorescence in the characterization of excised breast tissues. Laser Phys. 2017;27(8):085601. doi:10.1088/1555-6611/aa7ce4.
Ghasemi F, Parvin P, Hosseini Motlagh NS, Abachi S. LIF spectroscopy of stained malignant breast tissues. Biomed Opt Express. 2017;8(2):512-523. doi: 10.1364/BOE.8.000512.
Braginskaja OV, Lazarev VV, Polsachev VI, Rubin LB, Stoskii VE. Fluorescent diagnostics of human gastric cancer and sodium fluorescein accumulation in experimental gastric cancer in rats. Cancer Lett. 1993;69(2):117-21. doi: 10.1016/0304-3835(93)90163-4.
Lalayan AA, Aydinyan L, Harutyunyan I, Galstian HM. Multifrequency YAG: Nd laser for diagnosis of malignant tumors. Proceedings of the SPIE, Optical Biopsies and Microscopic Techniques III; 1998 Jan; 3414: 11-16. doi: 10.1117/12.336817.
Ghasemi F, Parvin P, Lotfi M. Laser-induced fluorescence spectroscopy for diagnosis of cancerous tissue based on the fluorescence properties of formaldehyde. Laser Phys Lett. 2019;16(3):035601. doi: 10.1088/1612-202X/AAF89D.
Lakowicz JR. Principles of fluorescence spectroscopy. 3rd ed. New York: Springer; 2006. doi:
1007/978-0-387-46312-4 .
Bavali A, Parvin P, Mortazavi SZ, Mohammadian M, Mousavi Pour MR. Red/blue spectral shifts of laser-induced fluorescence emission due to different nanoparticle suspensions in various dye solutions. App Opt. 2014;53(24):5398-5409. doi: 10.1364/AO.53.005398.
Hosseini Motlagh NS, Parvin P, Ghasemi F, Atyabi F, Jelvani S, Abolhosseini S. Laser-induced fluorescence spectroscopy of chemo-drugs as biocompatible fluorophores: irinotecan, gemcitabine, and navelbine. Laser Phys Letters. 2016,13(7):075604. doi: 10.1088/1612-2011/13/7/075604.
Perelman LT. Optical diagnostic technology based on light scattering spectroscopy for early cancer detection. Expert Rev Med Devices. 2006;3(6):787-803. doi: 10.1586/17434440.3.6.787.
Polson RC, Vardeny ZV. Random lasing in human tissues. Appl Phys Lett. 2004;85(7):1289-91. doi: 10.1063/1.1782259.
Zonios GI, Cothren RM, Arendt JT, Wu J, Van Dam J, Crawford JM, et al. Morphological model of human colon tissue fluorescence. IEEE Trans Biomed Eng. 1996;43(2):113-22. doi: 10.1109/10.481980.
Odze RD, Goldblum JR. Odze and Goldbum surgical pathology of the GI tract, liver, biliary tract, and pancreas. 3rd ed. Philadelphia: Saunders Elsevier; 2014.
Kumar V, Abbas A, Fausto N, Aster J. Robbins and Cotran pathologic basis of disease. 8th ed. Philadelphia: Saunders Elsevier; 2009.
Stillwell W. An introduction to biological membranes: composition, structure, and function. 2nd ed. Amsterdam: Elsevier Science; 2016.
Mogharari N, Sajad B. Random laser emission spectra of the normal and cancerous thyroid tissues. Iran J Sci Technol Trans A Sci. 2019;43:2055-2060. doi: 10.1007/s40995-019-00691-8.
- Abstract Viewed: 489 times
- PDF Downloaded: 336 times