The Combined Effect of Photobiomodulation and Curcumin on Acute Skin Wound Healing in Rats
Journal of Lasers in Medical Sciences,
Vol. 12 (2021),
13 February 2021
,
Page e9
Abstract
Introduction: Abnormal wound repair is a cause for a considerable expense, as well as patient morbidity and mortality. Here, we investigated the combined impact of photobiomodulation (PBM) and curcumin on a rat experimental model of an acute skin wound.
Methods: A round full-thickness wound was created on the back of each rat. We divided the rats into the following four groups. Group one was the control group. Group two received pulse wave (PW) PBM at a dose of 890 nm, 80 Hz, and 0.2 J/cm2. Group 3 received 40 mg/kg curcumin by gastric gavage and group 4 was treated with PWPBM + curcumin. We measured the wound area on days 4, 7, and 15, and performed microbiologically and tensiometry examinations.
Results: There was markedly improved wound contraction in the curcumin (7.5 ± 0.57; P=0.000), PBM (8.5 ± 1.2; P=0.000), and PBM + curcumin (14.5 ± 4.3; P=0.002) groups relative to the control group (25 ± 6). PBM (100 ± 7.3; P=0.005), and PBM + curcumin (98 ± 6; P=0.005) groups meaningfully improved tensile strength relative to the control group (61 ± 8.2). On day 15, the PBM (10 ± 5; P=0.000), curcumin (14 ± 4.5, P=0.000), and PBM + curcumin (27.3 ± 8.3; P=0.000) groups meaningfully decreased microbial flora relative to the control group (95 ± 6).
Conclusion: We concluded that the PBM and PBM + curcumin groups meaningfully accelerated wound healing of the acute skin wound in the rats. The results of the PBM group were statistically more effective than the curcumin alone and PBM + curcumin-treated groups.
- Wound healing, Curcumin, Therapies, Photobiomodulation, Low-level laser therapy, Wound closure techniques
How to Cite
References
Weiser TG, Haynes AB, Molina G, Lipsitz SR, Esquivel MM, Uribe-Leitz T, et al. Estimate of the global volume of surgery in 2012: an assessment supporting improved health outcomes. Lancet. 2015;385(Suppl 2):S11. doi: 10.1016/S0140-6736(15)60806-6.
Babaei S, Bayat M. Pentoxifylline accelerates wound healing process by modulating gene expression of MMP-1, MMP-3, and TIMP-1 in normoglycemic rats. J Invest Surg. 2015;28(4):196-201. doi: 10.3109/08941939.2014.1002642.
Ammon HP, Wahl MA. Pharmacology of Curcuma longa. Planta medica. 1991;57(1):1-7. doi: 10.1055/s-2006-960004.
Amalraj A, Pius A, Gopi S, Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives– A review. J Tradit Complement Med. 2017;7(2):205-33. doi: 10.1016/j.jtcme.2016.05.005.
Chainani-Wu N. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med. 2003;9(1):161-8. doi: 10.1089/107555303321223035.
Akbik D, Ghadiri M, Chrzanowski W, Rohanizadeh R. Curcumin as a wound healing agent. Life Sci. 2014;116(1):1-7. doi: 10.1016/j.lfs.2014.08.016.
Xu Y, Ge L, Abdel-Razek O, Jain S, Liu Z, Hong Y, et al. Differential susceptibility of human Sp-B genetic variants on lung injury caused by bacterial pneumonia and the effect of a chemically modified curcumin. Shock. 2016;45(4):375-84. doi: 10.1097/SHK.0000000000000535.
Jiang D, Gao P, Lin H, Geng H. Curcumin improves tendon healing in rats: a histological, biochemical, and functional evaluation. Connect Tissue Res. 2016;57(1):20-7. doi: 10.3109/03008207.2015.1087517.
Zhang Z, Leong DJ, Xu L, He Z, Wang A, Navati M, et al. Curcumin slows osteoarthritis progression and relieves osteoarthritis-associated pain symptoms in a post-traumatic osteoarthritis mouse model. Arthritis Res Ther. 2016;18(1):128. doi: 10.1186/s13075-016-1025-y.
Yao Y, Wang W, Li M, Ren H, Chen C, Wang J, et al. Curcumin exerts its anti-hypertensive effect by down-regulating the AT1 receptor in vascular smooth muscle cells. Sci Rep. 2016;6:25579. doi: 10.1038/srep25579.
Farivar S, Malekshahabi T, Shiari R. Biological effects of low level laser therapy. J Lasers Med Sci. 2014;5(2):58-62.
Percival SL, Francolini I, Donelli G. Low-level laser therapy as an antimicrobial and antibiofilm technology and its relevance to wound healing. Future Microbiol. 2015;10(2):255‐272. doi: 10.2217/fmb.14.109.
de Medeiros ML, Araújo-Filho I, da Silva EMN, de Sousa Queiroz WS, Soares CD, de Carvalho MGF, et al. Effect of low-level laser therapy on angiogenesis and matrix metalloproteinase-2 immunoexpression in wound repair. Lasers Med Sci. 2017;32(1):35-43. doi: 10.1007/s10103-016-2080-y.
Hussein AJ, Alfars AA, Falih MA, Hassan AN. Effects of a low level laser on the acceleration of wound healing in rabbits. N Am J Med Sci. 2011;3(4):193-7. doi: 10.4297/najms.2011.3193.
Ezzati A, Bayat M, Khoshvaghti A. Low-level laser therapy with a pulsed infrared laser accelerates second-degree burn healing in rat: a clinical and microbiologic study. Photomed Laser Surg. 2010;28(5):603-11. doi: 10.1089/pho.2009.2544.
Bayat M, Azari A, Golmohammadi MG. Effects of 780-nm low-level laser therapy with a pulsed gallium aluminum arsenide laser on the healing of a surgically induced open skin wound of rat. Photomed Laser Surg. 2010;28(4):465-70. doi: 10.1089/pho.2008.2450.
Sinno H, Prakash S. Complements and the wound healing cascade: an updated review. Plast Surg Int. 2013;2013:146764. doi: 10.1155/2013/146764.
Pereira RF, Bartolo PJ. Traditional therapies for skin wound healing. Adv Wound Care (New Rochelle). 2016;5(5):208-29. doi: 10.1089/wound.2013.0506.
Hatori K, Camargos GV, Chatterjee M, Faot F, Sasaki K, Duyck J, et al. Single and combined effect of high-frequency loading and bisphosphonate treatment on the bone micro-architecture of ovariectomized rats. Osteoporos Int. 2015;26(1):303-13. doi: 10.1007/s00198-014-2857-4.
Camargos G, Bhattacharya P, van Lenthe GH, Del Bel Cury AA, Naert I, Duyck J, et al. Mechanical competence of ovariectomy-induced compromised bone after single or combined treatment with high-frequency loading and bisphosphonates. Sci Rep. 2015;5:10795. doi: 10.1038/srep10795.
Sasaki H, Miyakoshi N, Kasukawa Y, Maekawa S, Noguchi H, Kamo K, et al. Effects of combination treatment with alendronate and vitamin K2 on bone mineral density and strength in ovariectomized mice. J Bone Miner Metab. 2010;28(4):403-9. doi: 10.1007/s00774-009-0148-5.
Ringe JD. [Combination treatment in osteoporosis. Basic treatment plus specific osteoporosis medication]. Med Monatsschr Pharm. 2009;32(4):137-40. In German.
López-Jornet P, Camacho-Alonso F, Jiménez-Torres MJ, Orduña-Domingo A, Gómez-García F. Topical curcumin for the healing of carbon dioxide laser skin wounds in mice. Photomed Laser Surg. 2011;29(12):809‐814. doi: 10.1089/pho.2011.3004.
Moradi A, Kheirollahkhani Y, Fatahi P, Abdollahifar MA, Amini A, Naserzadeh P, et al. An improvement in acute wound healing in mice by the combined application of photobiomodulation and curcumin-loaded iron particles. Lasers Med Sci. 2019;34(4):779‐791. doi: 10.1007/s10103-018-2664-9.
Ireton JE, Unger JG, Rohrich RJ. The role of wound healing and its everyday application in plastic surgery: a practical perspective and systematic review. Plast Reconstr Surg Glob Open. 2013;1(1):e10-e19. doi: 10.1097/GOX.0b013e31828ff9f4.
Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219‐229. doi: 10.1177/0022034509359125.
Soleimani H, Amini A, Taheri S, Sajadi E, Shafikhani S, Schuger LA, et al. The effect of combined photobiomodulation and curcumin on skin wound healing in type I diabetes in rats. J Photochem Photobiol B. 2018;181:23-30. doi: 10.1016/j.jphotobiol.2018.02.023.
Chang AC, Dearman B, Greenwood JE. A comparison of wound area measurement techniques: visitrak versus photography. Eplasty. 2011;11:e18.
Lin A, Hokugo A, Nishimura I. Wound closure and wound management: A new therapeutic molecular target. Cell Adh Migr. 2010;4(3):396-9. doi: 10.4161/cam.4.3.11917.
Sood A, Granick MS, Tomaselli NL. Wound dressings and comparative effectiveness data. Adv Wound Care (New Rochelle). 2014;3(8):511-29. doi: 10.1089/wound.2012.0401.
Günter CI, Machens HG. New strategies in clinical care of skin wound healing. Eur Surg Res. 2012;49(1):16-23. doi: 10.1159/000339860.
Jagetia GC, Rajanikant GK. Effect of curcumin on radiation-impaired healing of excisional wounds in mice. J Wound Care. 2004;13(3):107-9. doi: 10.12968/jowc.2004.13.3.26589.
Jagetia GC, Rajanikant GK. Curcumin treatment enhances the repair and regeneration of wounds in mice exposed to hemibody γ-irradiation. Plast Reconstr Surg. 2005;115(2):515-28. doi: 10.1097/01.prs.0000148372.75342.d9.
Jagetia GC, Rajanikant GK. Acceleration of wound repair by curcumin in the excision wound of mice exposed to different doses of fractionated γ radiation. Int Wound J. 2012;9(1):76-92. doi: 10.1111/j.1742-481X.2011.00848.x.
Reddy GK, Stehno‐Bittel L, Enwemeka CS. Laser photostimulation accelerates wound healing in diabetic rats. Wound Repair Regen. 2001;9(3):248-55. doi: 10.1046/j.1524-475x.2001.00248.x.
Vasilenko T, Slezák M, Kovác I, Bottková Z, Jakubco J, Kostelníková M, et al. The effect of equal daily dose achieved by different power densities of low-level laser therapy at 635 and 670 nm on wound tensile strength in rats: a short report. Photomed Laser Surg. 2010;28(2):281-3. doi: 10.1089/pho.2009.2489.
Bisht D, Mehrotra R, Singh PA, Atri SC, Kumar A. Effect of helium-neon laser on wound healing. Indian J Exp Biol. 1999;37(2):187-9.
Pereira PR, de Paula JB, Cielinski J, Pilonetto M, Von Bahten LC. Effects of low intensity laser in in vitro bacterial culture and in vivo infected wounds. Rev Col Bras Cir. 2014;41(1):49-55. doi: 10.1590/s0100-69912014000100010.
Nussbaum EL, Lilge L, Mazzulli T. Effects of 630-, 660-, 810-, and 905-nm laser irradiation delivering radiant exposure of 1-50 J/cm2 on three species of bacteria in vitro. J Clin Laser Med Surg. 2002;20(6):325-33. doi: 10.1089/104454702320901116.
Vasheghani MM, Bayat M, Dadpay M, Habibie M, Rezaei F. Low-level laser therapy using 80-Hz pulsed infrared diode laser accelerates third-degree burn healing in rat. Photomed Laser Surg. 2009;27(6):959-64. doi: 10.1089/pho.2008.2366.
Masson-Meyers DS, Bumah VV, Biener G, Raicu V, Enwemeka CS. The relative antimicrobial effect of blue 405 nm LED and blue 405 nm laser on methicillin-resistant Staphylococcus aureus in vitro. Lasers Med Sci. 2015;30(9):2265-71. doi: 10.1007/s10103-015-1799-1.
Silva DC, Plapler H, Costa MM, Silva SR, Sá MC, Silva BS. Low level laser therapy (AlGaInP) applied at 5J/cm2 reduces the proliferation of Staphylococcus aureus MRSA in infected wounds and intact skin of rats. An Bras Dermatol. 2013;88(1):50-5. doi: 10.1590/s0365-05962013000100005.
Santos NR, de M Sobrinho JB, Almeida PF, Ribeiro AA, Cangussú MC, dos Santos JN, et al. Influence of the combination of infrared and red laser light on the healing of cutaneous wounds infected by Staphylococcus aureus. Photomed Laser Surg. 2011;29(3):177-82. doi: 10.1089/pho.2009.2749.
Ezzati A, Bayat M, Taheri S, Mohsenifar Z. Low-level laser therapy with pulsed infrared laser accelerates third-degree burn healing process in rats. J Rehabil Res Dev. 2009;46(4):543-54. doi: 10.1682/jrrd.2008.09.0121.
Shomina SA, Bogatov VV, Chervinets VM. [Clinical-microbiological evaluation of the efficacy of combined use of chitosan, low intensity laser radiation and photosensitizer in treatment of patients with acute suppurative maxillofacial periostitis]. Stomatologiia (Mosk). 2005;84(3):23-6. Russian.
Han G, Ceilley R. Chronic wound healing: a review of current management and treatments. Adv Ther. 2017;34(3):599-610. doi: 10.1007/s12325-017-0478-y.
Lin PH, Sermersheim M, Li H, Lee PHU, Steinberg SM, Ma J. Zinc in wound healing modulation. Nutrients. 2017;10(1):16. doi: 10.3390/nu10010016.
Wu DQ, Zhu J, Han H, Zhang JZ, Wu FF, Qin XH, et al. Synthesis and characterization of arginine-NIPAAm hybrid hydrogel as wound dressing: In vitro and in vivo study. Acta Biomater. 2018;65:305-316. doi: 10.1016/j.actbio.2017.08.048.
Zhao X, Sun X, Yildirimer L, Lang Q, Lin ZY, Zheng R, et al. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomater. 2017;49:66-77. doi: 10.1016/j.actbio.2016.11.017.
Choi J, Park YG, Yun MS, Seol JW. Effect of herbal mixture composed of Alchemilla vulgaris and Mimosa on wound healing process. Biomed Pharmacother. 2018;106:326-332. doi: 10.1016/j.biopha.2018.06.141.
- Abstract Viewed: 751 times
- PDF Downloaded: 502 times