Efficacy of Photobiomodulation and Vitamin D on Odontogenic Activity of Human Dental Pulp Stem Cells Efficacy of Photobiomodulation and Vitamin D on Odontogenic Activity of HDPSCs
Journal of Lasers in Medical Sciences,
Vol. 12 (2021),
13 February 2021
,
Page e30
Abstract
Introduction: The regeneration of dental pulp tissue using human dental pulp stem cells (HDPSCs) has attracted increasing attention in recent years. Recent studies have suggested that several factors such as photobiomodulation (PBM) and vitamin D affect the proliferation and differentiation of HDPSCs. Therefore, the present study evaluated the effects of PBM and vitamin D on odontogenic differentiation of HDPSCs for dentin-like tissue formation.
Methods: HDPSCs were collected, isolated, and characterized and then divided into six groups: group I, control; group II, vitamin D (10-7 Mol); group III, irradiation at 1 J/cm2 of 810 nm diode laser; group IV, irradiation at 1 J/cm2 and culture with vitamin D; group V, irradiation at 2 J/cm2, and group VI, irradiation at 2 J/cm2 and culture with vitamin D, cell viability assay was measured through MTT. Alkaline phosphatase (ALP) enzyme activity and mRNA levels of vascular endothelial growth factor (VEGF), bone morphogenic protein-2 (BMP-2), and dentin sialophosphoprotein (DSPP) were also assessed.
Results: PBM at 1 and 2 J/cm2 combined with vitamin D significantly promoted HDPSCs proliferation through MTT assay and odontogenic differentiation through gene expression of VEGF, BMP-2, and DSPP levels (P<0.0001).
Conclusion: PBM at 2 J/cm2 combined with vitamin D enhanced the HDPSCs proliferation and odontogenic differentiation and thus could be a novel strategy for dentin regeneration in dentistry.
- Photobiomodulation (PBM); Vitamin D; Human dental pulp stem cells (HDPSCs); VEGF; BMP-2; DSPP
How to Cite
References
Shilpa PS, Kaul R, Sultana N, Bhat S. Stem cells: Boon to dentistry and medicine. Dent Res J (Isfahan). 2013; 10(2):149-54. doi:10.4103/1735- 3327.113321
Yasui T, Mabuchi Y, Morikawa S, Onizawa K, Akazawa C, Nakagawa T, et al. Isolation of dental pulp stem cells with high osteogenic potential. Inflamm Regen. 2017; 37(1): 8. doi: 10.1186/s41232-017-0039-4
Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M. Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg. 2005; 31(3):334–40. doi: 10.1111/j.1524-4725.2005.3108615
Woodruff LD, Bounkeo JM, Brannon WM, Dawes KS, Barham CD, Waddell DL, et al. The efficacy of laser therapy in wound repair: a meta-analysis of the literature. Photomed Laser Surg. 2004; 22(3):241–247. doi:10.1089/1549541041438623
Da Silva JP, da Silva MA, Almeida AP, Lombardi Junior I, Matos AP. Laser therapy in the tissue repair process: a literature review. Photomed Laser Surg. 2010; 28(1):17–21. doi: 10.1089/pho.2008.2372
El awam H, El Backly R, Zaky A, Abdallah A. Low-level laser therapy affects dentinogenesis and angiogenesis of in vitro 3D cultures of dentin-pulp complex. Lasers Med Sci. 2019;34(8):1689-98. doi:10.1007/s10103-019-02804-6.
Khanna-Jain R, Vuorinen A, Sándor GK, Suuronen R, Miettinen S. Vitamin D (3) metabolites induce osteogenic differentiation in the human dental pulp and human dental follicle cells. J Steroid Biochem Mol Biol. 2010;122(4):133–41.doi: 10.1016/j.jsbmb.2010.08.001
Woo SM, Lim HS, Jeong KY, Kim SM, Kim WJ, Jung JY. Vitamin D promotes odontogenic differentiation of human dental pulp cells via ERK activation. Molecules and Cells. 2015 Jul;38(7):604-609. doi:
14348/molcells.2015.2318.
Cho YD, Yoon WJ, Woo K M, Baek JH, Park JC, Ryoo H M. The canonical BMP signaling pathway plays a crucial part in stimulation of dentin sialophosphoprotein expression by BMP-2. J Biol Chem. 2010; 285(47):
-36376. doi: 10.1074/jbc.M110.103093.16
Zhang W, Zhang X, Ling J, Wei X, Jian Y. Osteo-/odontogenic differentiation of BMP2 and VEGF gene-co-transfected human stem cells from apical papilla. Mol Med Rep. 2016; 13(5):3747-3754. doi:10.3892/mmr.2016.4993
Tilotta F, Brousseau P, Lepareur E, Yasukawa K, de Mazancourt P. A comparative study of two methods of dental pulp extraction for genetic fingerprinting. Forensic Sci Int. 2010;202(1-3): e39-43. doi:
1016/j.forsciint.2010.06.019
Moussa MS, Hafez S, Sabry D. In Vitro differentiation potential of isolated dental pulp stem cells. Egypt Dent J. 2018;64(1-January (Oral Medicine, X-Ray, Oral Biology & Oral Pathology)):223-31.doi:10.21608/edj.2018.77075
Huang C, Bao L, Lin T, Lu Y, Wu Y. Proliferation and odontogenic differentiation of human umbilical cord mesenchymal stem cells and human dental pulp cells co-cultured in the hydrogel. Arch Oral Biol. 2020; 109:104582. doi.10.1016/j.archoralbio.2019.104582
Mathur A, Loskill P, Shao K, Huebsch N, Hong S, Marcus SG, et al. Human iPSC-based cardiac microphysiological system for drug screening applications. Sci Rep. 2015; 5(1):8883. doi:10.1038/srep08883
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent tmesenchymal stromal cells. ISCT Cytotherapy.2006;8(4): 315–7.doi:10.1080/14653240600855905
Lim SW, Loh HS, Ting KN, Bradshaw TD, Allaudin ZN. Reduction of MTT to purple formazan by vitamin E isomers in the absence of cells. Trop Life Sci Res.2015;26(1):111.
Farsi NM, El Ashiry EA, Abdrabuh RE, Bastawi HA, El Meligy OA. Effect of Different Pulp Capping Materials on Proliferation and Odontogenic Differentiation of Human Dental Pulp Mesenchymal Stem Cells. Int J Pharm
Res Allied Sci. 2018; 7(3):209–223.
Yang G, Ju Y, Liu S, Zhao S. Lipopolysaccharide upregulates the proliferation, migration, and odontoblastic differentiation of NG2 + cells from the human dental pulp in vitro. Cell Biol Int.2019;43(11):1276-85.
doi:10.1002/cbin.11127
Duncan HF, Kobayashi Y, Shimizu E. Growth Factors and Cell Homing in Dental Tissue Regeneration. Curr Oral Health Rep. 2018;5(4):276–85. doi:10.1007/s40496-018-0194-y
Barron MJ, McDonnell ST, MacKie I, Dixon MJ.Hereditary dentine disorders: dentinogenesis imperfecta and dentine dysplasia. Orphanet J Rare Dis. 2008; 3(1): 31. doi: 10.1186/1750-1172-3-31
Zaccara IM, Ginani F, Mota-Filho HG, Henriques ÁC, Barboza CA. Effect of low-level laser irradiation on proliferation and viability of human dental pulp stem cells. Lasers Med Sci. 2015; 30(9):2259–64. doi: 10.1186/1750-1172-3-31
Borzabadi-Farahani A. Effect of low-level laser irradiation on proliferation of human dental mesenchymal stem cells; a systemic review. J Photochem Photobiol B. 2016; 162:577–82. doi: 10.1016/j.jphotobiol.2016.07.022
Renno AC, McDonnell PA, Parizotto NA, LaaksoEL.The effects of laser irradiation on osteoblast and osteosarcoma cell proliferation and differentiation in vitro. Photomed Laser Surg. 2007; 25(4):275–80.
doi:10.1089/pho.2007.205518
Milward MR, Hadis MA, Cooper PR, Gorecki P, Carroll JD, Palin WM. Biomodulatory effects of laser irradiation on dental pulp cells in vitro. In: Proc of SPIE. 2015 ;(Volpp 930908–930901). doi: 10.1117/12.2077717
Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G. The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts—an in vitro study. Lasers Med Sci. 2012; 27(2):423–30. doi:10.1007/s10103-011-0930-1
Bouvet-Gerbettaz S, Merigo E, Rocca JP, Carle GF, Rochet N. Effects of low- level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoclasts. Lasers Surg Med. 2009; 41(4):291–7. doi: 10.1002/lsm.20759
Bègue‐Kirn C, Krebsbach PH, Bartlett JD, Butler WT. Dentinsialoprotein, dentin phosphoprotein, enamelysin and ameloblastin, tooth‐specific molecules that are distinctively expressed during murine dental differentiation. Eur J Oral Sci. 1998; 106(5): 963-970. doi:10.1046/j.0909- 8836.1998.eos106510.x
Arany PR, Cho A, Hunt TD, Sidhu G, Shin K, Hahm E, et al. Photoactivation of endogenous latent transforming growth factor–β1 directs dental stem cell differentiation for regeneration. Sci transl med. 2014; 6(238): 238ra69-
.doi:10.1126/scitranslmed.3008234.
Tonomura A, Sumita Y, Ando Y, Iejima D, Kagami H, Honda MJ, et al. Differential inducibility of human and porcine dental pulp-derived cells into odontoblasts. Connect Tissue Res. 2007; 48(5):229–38.
doi:10.14348/molcells.2015.231819
Ritchie HH, Park H, Liu J, Bervoets TJ, Bronckers A L. Effects of dexamethasone, vitamin A and vitamin D3 on DSP-PP mRNA expression in rat tooth organ culture. Biochim Biophys Acta. 2004; 1679(3):263–71. doi:
1016/j.bbaexp.2004.07.004
Chen S, Gluhak-Heinrich J, Martinez M, Li T, Wu Y, Chuang HH, et al . Bone
morphogenetic protein 2 mediates dentin sialophosphoprotein expression and odontoblast differentiation via NF-Y signaling. J Biol Chem. 2008; 283(28): 19359-19370. doi: 10.1074/jbc.M709492200.
Yang W, Harris MA, Cui Y, Mishina Y, Harris SE, Gluhak-Heinrich J. Bmp2 is required for odontoblast differentiation and pulp vasculogenesis. J Dent Res. 2012; 91(1):58–64. doi: 10.1177/0022034511424409
Manzano-Moreno FJ, Medina-Huertas R, Ramos-Torrecillas J, García- Martínez O, Ruiz C. The effect of low-level diode laser therapy on early differentiation of osteoblast via BMP-2/TGF-β1 and its receptors. J Craniomaxillofac Surg. 2015; 43(9):1926–32. doi: 10.1016/j.jcms.2015.08.026
Fujimoto K, Kiyosaki T, Mitsui N, Mayahara K, Omasa S, Suzuki N, et al. Low-intensity laser irradiation stimulates mineralization via increased BMPs in MC3T3-E1 cells. Lasers Surg Med. 2010;(6):519–26.doi:10.1002/lsm.20880
Nakashima M. Induction of dentin formation on canine amputated pulp by recombinant human bone morphogenetic proteins (BMP)-2and-4. J Dent Res.1994;73(9):1515-22. doi: 10.1177/00220345940730090601
Iohara K, Nakashima M, Ito M, Ishikawa M, Nakasima A, Akamine A. Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J Dent Res. 2004;83(8):590-5. doi:
1177/154405910408300802
De Oliveira TS, Serra AJ, Manchini MT, Bassaneze V, Krieger JE, de Tarso Camillo de Carvalho P, et al. Effects of low-level laser therapy on attachment, proliferation, and gene expression of VEGF and VEGF receptor 2 of
adipocyte-derived mesenchymal stem cells cultivated under nutritional deficiency. Lasers Med Sci. 2015; 30(1):217–23.doi: 10.1155/2015/409347
Gerwins P, Sköldenberg E, Claesson-Welsh L.Function of fibroblast growth factors and vascular endothelial growth factors and their receptors in angiogenesis. Crit Rev Oncol Hematol. 2000, 34(3):185–94.doi:
1007/s10103-014-1646-9
- Abstract Viewed: 670 times
- PDF Downloaded: 375 times