Effect of a Low-Level Laser on Liposomal Doxorubicin Efficacy in a Melanoma Cell Line Doxorubicin Delivery Enhancement in Response to Lasers Effect
Journal of Lasers in Medical Sciences,
Vol. 12 (2021),
13 February 2021
,
Page e28
Abstract
Introduction: The cytotoxicity of chemotherapy drugs is a significant challenge in the way of surmounting cancer. Liposomal drug delivery has proven to be efficacious in increasing the function of the drugs. Its potential to accumulate drugs in the target site and enhance the efficiency of anticancer agents with lower doses hinders their cytotoxicity on normal healthy cells. Since the release of drugs from liposomes is not generally on a controlled basis, several studies have suggested that external stimuli including lasers could be used to induce controlled release and boost the efficiency of liposomal drug delivery systems (LDDSs).
Methods: The A375 cancer cell line was used and exposed to the liposomes containing doxorubicin in the presence of a low-level laser beam to investigate its effect on the liposomal stimuliresponsiveness release and its toxicity on cancer cells. So as to achieve that goal, Annexin V/PI was employed to analyze the number of cells that underwent apoptosis and necrosis.
Results: Here, we report the effect of laser irradiation on LDDSs. According to the results obtained from the annexin V/PI assay, the pattern of viability status has shifted, so that the number of preapoptotic cells treated with liposomal doxorubicin and a laser beam was more than that of cells treated with only liposomal doxorubicin.
Conclusion: The use of stimuli-responsive LDDSs, in this case, laser-responsive, has led to favorable circumstances in the treatment of cancer, offering enhanced cancer cell cytotoxicity
- Low-level laser; Stimuli-sensitive liposomes; Cancer cytotoxicity; Liposomal drug delivery; Apoptosis
How to Cite
References
Olusanya TOB, Haj Ahmad RR, Ibegbu DM, Smith JR, Elkordy AA. Liposomal Drug Delivery Systems and Anticancer Drugs. Molecules. 2018;23(4):907. doi:10.3390/molecules23040907
Uddin MS, Ju J. Effect of crosslinking agents on drug distribution in chitosan hydrogel for targeted drug delivery to treat cancer. J Polym Res. 2020;27(3):1-10. doi:10.1007/s10965-020-02059-8
Man F, Gawne PJ, R TMdR. Nuclear imaging of liposomal drug delivery systems: A critical review of radiolabelling methods and applications in nanomedicine. Adv Drug Deliv Rev. 2019;143:134-60. doi:10.1016/j.addr.2019.05.012
Lukowski JK, Weaver EM, Hummon AB. Analyzing liposomal drug delivery systems in three-dimensional cell culture models using MALDI imaging mass spectrometry. Anal Chem. 2017;89(16):8453-8. doi:10.1021/acs.analchem.7b02006
Gubernator J. Active methods of drug loading into liposomes: recent strategies for stable drug entrapment and increased in vivo activity. Expert Opin Drug Deliv . 2011;8(5):565-80. doi:10.1517/17425247.2011.566552
Yao C, Wang P, Li X, Hu X, Hou J, Wang L, et al. Near-Infrared-Triggered Azobenzene-Liposome/Upconversion Nanoparticle Hybrid Vesicles for Remotely Controlled Drug Delivery to Overcome Cancer Multidrug Resistance. Adv Mater. 2016;28(42):9341-8. doi:10.1002/adma.201503799
Sopyan I, Gozali D. A Review: A Novel of Efforts to Enhance Liposome Stability as Drug Delivery Approach. Systematic Reviews in Pharmacy. 2020;11(6). doi:10.31838/srp.2020.6.85
Mester E, Mester AF, Mester A. The biomedical effects of laser application. Lasers Surg Med. 1985;5(1):31-9. doi:10.1002/lsm.1900050105
Wenande E, Olesen UH, Boesen MR, Persson DP, Lerche CM, Sturup S, et al. Laser-assisted delivery enhances topical uptake of the anticancer agent cisplatin. Drug Deliv. 2018;25(1):1877-85. doi:10.1080/10717544.2018.1534896
Goldman L. Laser cancer research. Springer Science & Business Media; 2012.
Rhodes K, Clark I, Zatcoff M, Eustaquio T, Hoyte KL, Koller MR. Cellular laserfection. Methods Cell Biol. 2007;82:309-33. doi:10.1016/S0091-679X(06)82010-8
Karu TI, Pyatibrat LV, Kalendo GS, Esenaliev RO. Effects of monochromatic low-intensity light and laser irradiation on adhesion of HeLa cells in vitro. Lasers Surg Med. 1996;18(2):171-7. doi:10.1002/(SICI)1096-9101(1996)18:2<171::AID-LSM7>3.0.CO;2-P
Murphy-Chutorian D, Mueller RL, Harman SD, Daniel SA, Witham L, Richardson B, inventors; Eclipse Surgical Technologies Inc, assignee. Laser delivery means adapted for drug delivery. United States patent US 5,999,678. 1999 Dec 7.
Farivar S, Malekshahabi T, Shiari R. Biological effects of low level laser therapy. J Lasers Med Sci. 2014;5(2):58.
Khosroshahi M, Ghazanfari L, Hasannejad Z. Effect of laser wavelengths on drug release with and without gold nanoshells and magnetic guidance on uptake by cancer cells. J Nanomed Res. 2017;6. doi:10.15406/jnmr.2017.06.00152
Guo Y, Chen Y, Han P, Liu Y, Li W, Zhu F, et al. Biocompatible chitosan-carbon nanocage hybrids for sustained drug release and highly efficient laser and microwave co-irradiation induced cancer therapy. Acta Biomater. 2020;103:237-46. doi:10.1016/j.actbio.2019.12.010
Yu S, Huang G, Yuan R, Chen T. A uPAR targeted nanoplatform with an NIR laser-responsive drug release property for tri-modal imaging and synergistic photothermal-chemotherapy of triple-negative breast cancer. Biomater Sci. 2020;8(2):720-38. doi:10.1039/c9bm01495k
Goldman L. The biomedical laser: technology and clinical applications. Springer Science & Business Media; 2013.
Raulin C, Karsai S. Laser and IPL technology in dermatology and aesthetic medicine. Springer Science & Business Media; 2011.
Balavandi Z, Neshasteh-Riz A, Koosha F, Eynali S, Hoormand M, Shahidi M. The use of ß-Elemene to enhance radio sensitization of A375 human melanoma cells. Cell J (Yakhteh). 2020;21(4):419. doi:10.22074/cellj.2020.6326
Zhang HL, Si LB, Zeng A, Long F, Qi Z, Zhao R, et al. MicroRNA-21 antisense oligonucleotide improves the sensitivity of A375 human melanoma cell to Cisplatin: An in vitro study. J Cell Biochem. 2018;119(4):3129-41. doi:10.1002/jcb.26455
de Lima RdN, Vieira SS, Antonio EL, de Carvalho PdTC, de Paula Vieira R, Mansano BSDM, et al. Low-level laser therapy alleviates the deleterious effect of doxorubicin on rat adipose tissue-derived mesenchymal stem cells. J Photochem Photobiol B. 2019;196:111512. doi:10.1016/j.jphotobiol.2019.111512
Tang Y, McGoron AJ. Combined effects of laser-ICG photothermotherapy and doxorubicin chemotherapy on ovarian cancer cells. J Photochem Photobiol B. 2009;97(3):138-44. doi:10.1016/j.jphotobiol.2009.09.001
Tanaka J, Hirano K, Sakamoto Y, Sugahara-Tobinai A, Endo S, Ito-Matsuoka Y, et al. Intravenous immunoglobulin suppresses IL-10 production by activated B cells in vitro. Open J Immunol. 2012;2(4): 149-160. doi:10.4236/oji.2012.24019
Kinsella S, Evandy CA, Cooper K, Iovino L, Paul Cd, Hopwo KS, et al. Attenuation of homeostatic signaling from apoptotic thymocytes triggers a global regenerative response in the thymus. bioRxiv. 2020. doi:10.1101/2020.08.31.275834
Kauffman MK, Kauffman ME, Zhu H, Jia Z, Li YR. Fluorescence-Based Assays for Measuring Doxorubicin in Biological Systems. React Oxyg Species (Apex). 2016;2(6):432-9. doi:10.20455/ros.2016.873
Hu J, Zhan S, Wu X, Hu S, Wu S, Liu Y. Core/shell upconversion nanoparticles with intense fluorescence for detecting doxorubicin in vivo. RSC advances. 2018;8(38):21505-12. doi:10.1039/C8RA02928H
Allen TM, Martin FJ. Advantages of liposomal delivery systems for anthracyclines. Semin Oncol. 2004;31(suppl.13):5-15. doi:10.1053/j.seminoncol.2004.08.001
Fuse T, Tagami T, Tane M, Ozeki T. Effective light-triggered contents release from helper lipid-incorporated liposomes co-encapsulating gemcitabine and a water-soluble photosensitizer. Int J Pharm. 2018;540(1-2):50-6. doi:10.1016/j.ijpharm.2018.01.040
Wu G, Mikhailovsky A, Khant HA, Fu C, Chiu W, Zasadzinski JA. Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells. J Am Chem Soc. 2008;130(26):8175-7. doi:10.1021/ja802656d
Yavlovich A, Singh A, Blumenthal R, Puri A. A novel class of photo-triggerable liposomes containing DPPC: DC8, 9PC as vehicles for delivery of doxorubcin to cells. Biochim Biophys Acta Biomembr BBA-BIOMEMBRANES. 2011;1808(1):117-26. doi:10.1016/j.bbamem.2010.07.030
- Abstract Viewed: 513 times
- PDF Downloaded: 365 times