نقش کلیدی التهاب و سلولهای ایمنی در آسیب دیدگی نخاع و رخداد اختلال ریوی متعاقب آن، یک مقاله مروری روایی التهاب در آسیب دیدگی نخاع و رخداد اختلال ریوی متعاقب آن
فصلنامه نفس,
دوره 9 شماره 4 (1401),
30 آبان 2022
چکیده
زمینه و هدف: عوارض ریوی ازجمله نارسایی و عفونت تنفسی در بیماران مبتلا به آسیب تروماتیک نخاعی کاملاً رایج هستند. توسعه آسیب ثانویه در ناحیه ضایعه ایجاد شده که پس از آسیب تروماتیک نخاعی بروز میکند از یک پاسخ التهابی سیستمیک ناشی میشود. در حقیقت، پاسخ التهابی سیستمیک متعاقب آسیب تروماتیک نخاعی ممکن است نقشی کلیدی در توسعه و گسترش آسیب ثانویه به طناب نخاعی ایفا کند.
روش بررسی: در نگارش این مقاله مروری از مقالات نمایه شده در پایگاههای اطلاعاتی Science Direct, Scopus, Pubmed, Springer Science و Google scholar استفاده و مقالات منتشر شده بدون مدنظر قرار دادن محدودیت زمانی جستوجو شدند. مقاله با استفاده از کلمات کلیدی آسیب تروماتیک نخاعی (SCI)، پاسخهای التهابی سیستمیک، نوتروفیل، آسیب ریوی نگارش شده است.
یافتهها: آسیب تروماتیک نخاعی سبب بروز پاسخهای التهابی سیستمیک میشود که به وسیله افزایش واسطههای پیشبرنده التهابی و سلولهای ایمنی در گردش خون مشخص شده و سرانجام باعث نفوذ سلولهای التهابی به اندامهای ثانویه و تداوم بقای میکرو محیطهای التهابی میشود که در بروز اختلال عملکرد چندین اندام، مشارکت میکنند.
نتیجهگیری: آسیب تروماتیک نخاعی، نقص ایمنی را از طریق ایجاد اختلال در عملکرد اندامها ایمنی اعمال میکند. ریهها، بافت هدف اصلی التهاب حاد القاء شده به وسیله آسیب تروماتیک نخاعی هستند. پاسخهای التهابی سیستمیک متعاقب آسیب تروماتیک نخاعی باید به عنوان اهداف اصلی در توسعة رویکردهای نوین درمانی برای درمان آسیب تروماتیک نخاعی مدنظر قرار گیرند.
- آسیب تروماتیک نخاعی (SCI)
- پاسخهای التهابی سیستمیک
- نوتروفیل
- آسیب ریوی
ارجاع به مقاله
مراجع
Jackson AB, Dijkers M, DeVivo MJ, Poczatek RB. A demographic profile of new traumatic spinal cord injuries: change and stability over 30 years. Archives of Physical Medicine and Rehabilitation. 2004;85(11):1740-1748.
Schilero GJ, Radulovic M, Wecht JM, Spungen AM, Bauman WA, Lesser M. A center’s experience: pulmonary function in spinal cord injury. Lung. 2014;192(3):339-346.
Berlowitz DJ, Wadsworth B, Ross J. Respiratory problems and management in people with spinal cord injury. Breathe. 2016;12(4):328-340.
Postma K, Post M, Haisma J, Stam H, Bergen M, Bussmann J. Impaired respiratory function and associations with health-related quality of life in people with spinal cord injury. Spinal Cord. 2016;54(10):866-871.
Hagen EM, Lie SA, Rekand T, Gilhus NE, Gronning M. Mortality after traumatic spinal cord injury: 50 years of follow-up. Journal of Neurology, Neurosurgery & Psychiatry. 2010;81(4):368-373.
Blight A. Macrophages and inflammatory damage in spinal cord injury. Journal of Neurotrauma. 1992;9:S83-91.
Fleming JC, Norenberg MD, Ramsay DA, et al. The cellular inflammatory response in human spinal cords after injury. Brain. 2006;129(12):3249-3269.
Popovich PG, Wei P, Stokes BT. Cellular inflammatory response after spinal cord injury in Sprague‐Dawley and Lewis rats. Journal of Comparative Neurology. 1997;377(3):443-464.
Saville L, Pospisil C, Mawhinney L, et al. A monoclonal antibody to CD11d reduces the inflammatory infiltrate into the injured spinal cord: a potential neuroprotective treatment. Journal of Neuroimmunology. 2004;156(1-2):42-57.
Taoka Y, Okajima K, Uchiba M, et al. Role of neutrophils in spinal cord injury in the rat. Neuroscience. 1997;79(4):1177-1182.
Bao F, Liu D. Hydroxyl radicals generated in the rat spinal cord at the level produced by impact injury induce cell death by necrosis and apoptosis: protection by a metalloporphyrin. Neuroscience. 2004;126(2):285-295.
Javdani M, Ghorbani R, Hashemnia M. Histopathological evaluation of spinal cord with experimental traumatic injury following implantation of a controlled released drug delivery system of chitosan hydrogel loaded with selenium nanoparticle. Biological Trace Element Research. 2021;199(7):2677-2686.
Barzegar-Bafrouei A, Javdani M. A Review of the Occurrence and Mechanisms of Induction of Osteoporosis Following Spinal Cord Injury. Journal of Shahid Sadoughi University. 2021;29(1):3355-3374. [in Persian]
Bhatia RK, Pallister I, Dent C, Jones SA, Topley N. Enhanced neutrophil migratory activity following major blunt trauma. Injury. 2005;36(8):956-962.
Kyono W, Coates TD. A practical approach to neutrophil disorders. Pediatric Clinics. 2002;49(5):929-971.
Acosta JA, Yang JC, Winchell RJ, et al. Lethal injuries and time to death in a level I trauma center. Journal of the American College of Surgeons. 1998;186(5):528-533.
Javdani M, Barzegar Bafrouei A, Soleimaninejadian E, Karimipour E. P167: Key role of inflammation in central nervous system damage and disease; TNFα, IL-1. The Neuroscience Journal of Shefaye Khatam. 2018;6(2):198.
Javdani M, Barzegar-Bafrouei A. Systemic inflammatory response syndrome due to surgery and its effective therapeutic approaches. Journal of Shahid Sadoughi University of Medical Sciences. 2020;28(5):2614-2634. [in Persian]
Javdani M, Ghorbani Ghahfarokhi R, Nafar Sefid Dashti M, Barzegar Bafrouei A, Sadeghi Sefid Dashti M. P168: delayed imatinib treatment for spinal cord damage; role of serum biomarkers and recovery. The Neuroscience Journal of Shefaye Khatam. 2018;6(2):199.
Baskaran H, Yarmush ML, Berthiaume F. Dynamics of tissue neutrophil sequestration after cutaneous burns in rats. Journal of Surgical Research. 2000;93(1):88-96.
Ott L, McClain CJ, Gillespie M, Young B. Cytokines and metabolic dysfunction after severe head injury. Journal of Neurotrauma. 1994;11(5):447-472.
Mansel JK, Norman JR. Respiratory complications and management of spinal cord injuries. Chest. 1990;97(6):1446-1452.
Roth E, Nussbaum S, Berkowitz M, et al. Pulmonary function testing in spinal cord injury: correlation with vital capacity. Spinal Cord. 1995;33(8):454-457.
Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U. Central nervous system injury-induced immune deficiency syndrome. Nature Reviews Neuroscience. 2005;6(10):775-786.
Zhang Y, Guan Z, Reader B, et al. Autonomic dysreflexia causes chronic immune suppression after spinal cord injury. Journal of Neuroscience. 2013;33(32):12970-12981.
Lucin KM, Sanders VM, Jones TB, Malarkey WB, Popovich PG. Impaired antibody synthesis after spinal cord injury is level dependent and is due to sympathetic nervous system dysregulation. Experimental Neurology. 2007;207(1):75-84.
Oropallo MA, Held KS, Goenka R, et al. Chronic spinal cord injury impairs primary antibody responses but spares existing humoral immunity in mice. The Journal of Immunology. 2012;188(11):5257-5266.
Altinors N. Analysis of serum pro-inflammatory cytokine levels after rat spinal cord ischemia/reperfusion injury and correlation with tissue damage. Turkish Neurosurgery. 2009;19(4):353-359.
Popovich PG, Stuckman S, Gienapp IE, Whitacre CC. Alterations in immune cell phenotype and function after experimental spinal cord injury. Journal of Neurotrauma. 2001;18(9):957-966.
Anthony DC, Couch Y. The systemic response to CNS injury. Experimental Neurology. 2014;258:105-111.
Bigford GE, Bracchi-Ricard VC, Keane RW, Nash MS, Bethea JR. Neuroendocrine and cardiac metabolic dysfunction and NLRP3 inflammasome activation in adipose tissue and pancreas following chronic spinal cord injury in the mouse. ASN neuro. 2013;5(4):AN20130021.
Bigford GE, Bracchi-Ricard VC, Nash MS, Bethea JR. Alterations in mouse hypothalamic adipokine gene expression and leptin signaling following chronic spinal cord injury and with advanced age. PLoS One. 2012;7(7):e41073.
Bao F, Bailey CS, Gurr KR, et al. Increased oxidative activity in human blood neutrophils and monocytes after spinal cord injury. Experimental Neurology. 2009;215(2):308-316.
Kesani AK, Urquhart JC, Bedard N, et al. Systemic inflammatory response syndrome in patients with spinal cord injury: does its presence at admission affect patient outcomes? Journal of Neurosurgery: Spine. 2014;21(2):296-302.
Lerch JK, Puga DA, Bloom O, Popovich PG, editors. Glucocorticoids and macrophage migration inhibitory factor (MIF) are neuroendocrine modulators of inflammation and neuropathic pain after spinal cord injury. Seminars in Immunology; 2014: Elsevier.
Wu J, Zhao Z, Sabirzhanov B, et al. Spinal cord injury causes brain inflammation associated with cognitive and affective changes: role of cell cycle pathways. Journal of Neuroscience. 2014;34(33):10989-11006.
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nature reviews immunology. 2008;8(12):958-969.
Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nature reviews immunology. 2011;11(11):723-737.
Javdani M, Barzegar A, Khosravian P, Hashemnia M. Evaluation of inflammatory response due to use of controlled release drug delivery system of chitosan hydrogel loaded with buprenorphine and ketorolac in rat with experimental proximal tibial epiphysis defect. Journal of Investigative Surgery. 2022;35(5):996-1011.
Javdani M, Barzegar-Bafrouei A. The key role of macrophages and monocytes in spinal cord injury: development of novel therapeutic approaches. The Neuroscience Journal of Shefaye Khatam. 2020;8(4):90-102. [in Persian]
Javdani M, Sadeghi Sefiddashti M, Ghorbani Ghahfarokhi R, Nafar Sefid Dashti M, Barzgar Bafrouei A. P169: The role of lymphocytes in spinal cord injury and pain; t helper cells (th1 and th2 cells). The Neuroscience Journal of Shefaye Khatam. 2018;6(2):200-.
Barzegar-Bafrouei A, Javdani M. Importance and surgical methods of induction of endometriosis and osteoporosis following menopause in rats: an overview study. Journal of Shahid Sadoughi University. 2022;30(5):4793-812. [in Persian]
Javdani M, Barzegar Bafrouei A. P183: Key function of complement system in interactions between pain and nociceptors, C5a, and C3a. The Neuroscience Journal of Shefaye Khatam. 2018;6(2):214.
Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. Journal of Neuroscience. 2009;29(43):13435-13444.
Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nature Reviews Immunology. 2005;5(12):953-964.
Shechter R, Miller O, Yovel G, et al. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity. 2013;38(3):555-569.
Dalli J, Serhan CN. Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators. Blood. 2012;120(15):e60-e72.
Gris D, Hamilton EF, Weaver LC. The systemic inflammatory response after spinal cord injury damages lungs and kidneys. Experimental Neurology. 2008;211(1):259-270.
Altemeier WA, Matute-Bello G, Frevert CW, et al. Mechanical ventilation with moderate tidal volumes synergistically increases lung cytokine response to systemic endotoxin. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2004;287(3):L533-L42.
Kopp MA, Druschel C, Meisel C, et al. The SCIentinel study-prospective multicenter study to define the spinal cord injury-induced immune depression syndrome (SCI-IDS)-study protocol and interim feasibility data. BMC Neurology. 2013;13(1):1-12.
Furlan JC, Krassioukov AV, Fehlings MG. Hematologic abnormalities within the first week after acute isolated traumatic cervical spinal cord injury: a case-control cohort study. Spine. 2006;31(23):2674-2683.
Schwab JM, Zhang Y, Kopp MA, Brommer B, Popovich PG. The paradox of chronic neuroinflammation, systemic immune suppression, autoimmunity after traumatic chronic spinal cord injury. Experimental Neurology. 2014;258:121-129.
Popovich P, McTigue D. Damage control in the nervous system: beware the immune system in spinal cord injury. Nature Medicine. 2009;15(7):736-737.
Riegger T, Conrad S, Schluesener H, et al. Immune depression syndrome following human spinal cord injury (SCI): a pilot study. Neuroscience. 2009;158(3):1194-1199.
Brommer B, Engel O, Kopp MA, et al. Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level. Brain. 2016;139(3):692-707.
Failli V, Kopp MA, Gericke C, et al. Functional neurological recovery after spinal cord injury is impaired in patients with infections. Brain. 2012;135(11):3238-3250.
57. Wang L, Yu W-b, Tao L-y, Xu Q. Myeloid-derived suppressor cells mediate immune suppression in spinal cord injury. Journal of Neuroimmunology. 2016;290:96-102.
Cotton BA, Pryor JP, Chinwalla I, Wiebe DJ, Reilly PM, Schwab CW. Respiratory complications and mortality risk associated with thoracic spine injury. Journal of Trauma and Acute Care Surgery. 2005;59(6):1400-1409.
Sezer N, Akkuş S, Uğurlu FG. Chronic complications of spinal cord injury. World Journal of Orthopedics. 2015;6(1):24.
Veeravagu A, Jiang B, Rincon F, Maltenfort M, Jallo J, Ratliff J. Acute respiratory distress syndrome and acute lung injury in patients with vertebral column fracture (s) and spinal cord injury: a nationwide inpatient sample study. Spinal Cord. 2013;51(6):461-465.
Yong T, Lili Y, Wen Y, Xinwei W, Xuhui Z. Pulmonary edema and hemorrhage, possible causes of pulmonary infection and respiratory failure in the early stage of lower spinal cord injury. Medical Hypotheses. 2012;79(3):299-301.
Botha AJ, Moore FA, Moore EE, Sauaia A, Banerjee A, Peterson VM. Early neutrophil sequestration after injury: a pathogenic mechanism for multiple organ failure. Journal of Trauma and Acute Care Surgery. 1995;39(3):411-417.
Jones T, McDaniel E, Popovich P. Inflammatory-mediated injury and repair in the traumatically injured spinal cord. Current Pharmaceutical Design. 2005;11(10):1223-1236.
Yong VW, Agrawal SM, Stirling DP. Targeting MMPs in acute and chronic neurological conditions. Neurotherapeutics. 2007;4(4):580-589.
Chakrabarti S, Patel KD. Matrix metalloproteinase-2 (MMP-2) and MMP-9 in pulmonary pathology. Experimental Lung Research. 2005;31(6):599-621.
Resnick DK, Graham SH, Dixon CE, Marion DW. Role of cyclooxygenase 2 in acute spinal cord injury. Journal of Neurotrauma. 1998;15(12):1005-1013.
Wang CX, Olschowka JA, Wrathall JR. Increase of interleukin-1β mRNA and protein in the spinal cord following experimental traumatic injury in the rat. Brain Research. 1997;759(2):190-196.
Campbell SJ, Perry VH, Pitossi FJ, et al. Central nervous system injury triggers hepatic CC and CXC chemokine expression that is associated with leukocyte mobilization and recruitment to both the central nervous system and the liver. The American Journal of Pathology. 2005;166(5):1487-1497.
Javdani M, Habibi A, Shirian S, Kojouri GA, Hosseini F. Effect of selenium nanoparticle supplementation on tissue inflammation, blood cell count, and IGF-1 levels in spinal cord injury-induced rats. Biological Trace Element Research. 2019;187(1):202-211.
Garshick E, Stolzmann KL, Gagnon DR, Morse LR, Brown R. Systemic inflammation and reduced pulmonary function in chronic spinal cord injury. Physical Medicine & Rehabilitation Journal. 2011;3(5):433-439.
Hart JE, Morse L, Tun CG, Brown R, Garshick E. Cross-sectional associations of pulmonary function with systemic inflammation and oxidative stress in individuals with chronic spinal cord injury. The Journal of Spinal Cord Medicine. 2016;39(3):344-352.
Bao F, Omana V, Brown A, Weaver LC. The systemic inflammatory response after spinal cord injury in the rat is decreased by α4β1 integrin blockade. Journal of Neurotrauma. 2012;29(8):1626-1637.
Weaver LC, Bao F, Dekaban GA, et al. CD11d integrin blockade reduces the systemic inflammatory response syndrome after traumatic brain injury in rats. Experimental Neurology. 2015;271:409-422.
Bao F, Brown A, Dekaban GA, Omana V, Weaver LC. CD11d integrin blockade reduces the systemic inflammatory response syndrome after spinal cord injury. Experimental Neurology. 2011;231(2):272-283.
Das S, Das DK. Anti-inflammatory responses of resveratrol. Inflammation & Allergy-Drug Targets (Formerly Current Drug Targets-Inflammation & Allergy) (Discontinued). 2007;6(3):168-173.
Kaplan S, Bisleri G, Morgan JA, Cheema FH, Oz MC. Resveratrol, a natural red wine polyphenol, reduces ischemia-reperfusion–induced spinal cord injury. The Annals of Thoracic Surgery. 2005;80(6):2242-2249.
Kiziltepe U, Turan NND, Han U, Ulus AT, Akar F. Resveratrol, a red wine polyphenol, protects spinal cord from ischemia-reperfusion injury. Journal of Vascular Surgery. 2004;40(1):138-145.
Yang Y-B, Piao Y-J. Effects of resveratrol on secondary damages after acute spinal cord injury in rats. Acta Pharmacologica Sinica. 2003;24(7):703-710.
Liu J, Yi L, Xiang Z, Zhong J, Zhang H, Sun T. Resveratrol attenuates spinal cord injury-induced inflammatory damage in rat lungs. International Journal of Clinical and Experimental Pathology. 2015;8(2):1237.
DeNinno MP, Schoenleber R, MacKenzie R, et al. A68930: a potent agonist selective for the dopamine D1 receptor. European Journal of Pharmacology. 1991;199(2):209-219.
Jiang W, Huang Y, He F, et al. Dopamine D1 receptor agonist A-68930 inhibits NLRP3 inflammasome activation, controls inflammation, and alleviates histopathology in a rat model of spinal cord injury. Spine. 2016;41(6):E330-E4.
Botha A, Moore F, Moore E, Peterson V, Silliman C, Goode A. Sequential systemic platelet-activating factor and interleukin 8 primes neutrophils in patients with trauma at risk of multiple organ failure. Journal of British Surgery. 1996;83(10):1407-1412.
Dancey J, Deubelbeiss KA, Harker LA, Finch CA. Neutrophil kinetics in man. The Journal of Clinical Investigation. 1976;58(3):705-715.
Kobayashi SD, Voyich JM, DeLeo FR. Regulation of the neutrophil-mediated inflammatory response to infection. Microbes and Infection. 2003;5(14):1337-11344.
Tanaka H, Ogura H, Yokota J, Sugimoto H, Yoshioka T, Sugimoto T. Acceleration of superoxide production from leukocytes in trauma patients. Annals of Surgery. 1991;214(2):187.
Sunil VR, Connor AJ, Zhou P, Gordon MK, Laskin JD, Laskin DL. Activation of adherent vascular neutrophils in the lung during acute endotoxemia. Respiratory Research. 2002;3(1):1-10.
Walzog B, Weinmann P, Jeblonski F, Scharffetter‐Kochanek K, Bommert K, Gaehtgens P. A role for β2 integrins (CD11/CD18) in the regulation of cytokine gene expression of polymorphonuclear neutrophils during the inflammatory response. The FASEB Journal. 1999;13(13):1855-1865.
Wittmann S, Rothe G, Schmitz G, Fröhlich D. Cytokine upregulation of surface antigens correlates to the priming of the neutrophil oxidative burst response. Cytometry Part A: The Journal of the International Society for Analytical Cytology. 2004;57(1):53-62.
Javdani M, Nafar M, Mohebi A, Khosravian P, Barzegar A. Evaluation of leukocyte response due to implant of a controlled released drug delivery system of chitosan hydrogel loaded with selenium nanoparticle in rats with experimental spinal cord injury. Tabari Biomedical Student Research Journal. 2022.
Cruse JM, Lewis RE, Bishop R, et al. Adhesion molecules and wound healing in spinal cord injury. Pathobiology. 1996;64(4):193-197.
Michael J, Krause JS, Lammertse DP. Recent trends in mortality and causes of death among persons with spinal cord injury. Archives of Physical Medicine and Rehabilitation. 1999;80(11):1411-1419.
Cruse JM, Lewis RE, Bishop GR, Kliesch WF, Gaitan E. Neuroendocrine-immune interactions associated with loss and restoration of immune system function in spinal cord injury and stroke patients. Immunologic Research. 1992;11(2):104-116.
Cruse J, Lewis R, Dilioglou S, Roe D, Wallace W, Chen R. Review of immune function, healing of pressure ulcers, and nutritional status in patients with spinal cord injury. The Journal of Spinal Cord Medicine. 2000;23(2):129-135.
Davies LC, Rosas M, Smith PJ, Fraser DJ, Jones SA, Taylor PR. A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation. European Journal of Immunology. 2011;41(8):2155-2164.
Rosenfeld M, Ross R. Macrophage and smooth muscle cell proliferation in atherosclerotic lesions of WHHL and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis: An Official Journal of the American Heart Association, Inc. 1990;10(5):680-687.
Yang N, Isbel NM, Nikolic-Paterson DJ, et al. Local macrophage proliferation in human glomerulonephritis. Kidney International. 1998;54(1):143-151.
Xaus J, Comalada M, Valledor AF, et al. Molecular mechanisms involved in macrophage survival, proliferation, activation or apoptosis. Immunobiology. 2001;204(5):543-550.
Worthen GS, Schwab B, Elson EL, Downey GP. Mechanics of stimulated neutrophils: cell stiffening induces retention in capillaries. Science. 1989;245(4914):183-186.
Crimi E, Zhang H, Han RN, Sorbo LD, Ranieri VM, Slutsky AS. Ischemia and reperfusion increases susceptibility to ventilator-induced lung injury in rats. American Journal of Respiratory and Critical Care Medicine. 2006;174(2):178-186.
Kielar ML, Jeyarajah DR, Lu CY. The regulation of ischemic acute renal failure by extrarenal organs. Current Opinion in Nephrology and Hypertension. 2002;11(4):451-457.
Perry VH. The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease. Brain, Behavior, and Immunity. 2004;18(5):407-413.
Neff SB, Neff TA, Kunkel SL, Hogaboam CM. Alterations in cytokine/chemokine expression during organ-to-organ communication established via acetaminophen-induced toxicity. Experimental and Molecular Pathology. 2003;75(3):187-193.
Seekamp A, Mulligan M, Till G, et al. Role of beta 2 integrins and ICAM-1 in lung injury following ischemia-reperfusion of rat hind limbs. The American Journal of Pathology. 1993;143(2):464.
Wymann M, Kernen P, Deranleau D, Baggiolini M. Respiratory burst oscillations in human neutrophils and their correlation with fluctuations in apparent cell shape. Journal of Biological Chemistry. 1989;264(27):15829-15834.
Yan Y-j, Li Y, Lou B, Wu M-p. Beneficial effects of ApoA-I on LPS-induced acute lung injury and endotoxemia in mice. Life Sciences. 2006;79(2):210-215.
Leskovar A, Moriarty LJ, Turek JJ, Schoenlein IA, Borgens RB. The macrophage in acute neural injury: changes in cell numbers over time and levels of cytokine production in mammalian central and peripheral nervous systems. Journal of Experimental Biology. 2000;203(12):1783-1795.
Vega VL, Maldonado M, Mardones L, et al. Role of Küpffer cells and PMN leukocytes in hepatic and systemic oxidative stress in rats subjected to tourniquet shock. Shock (Augusta, Ga). 1999;11(6):403-10.
Grattendick K, Stuart R, Roberts E, et al. Alveolar macrophage activation by myeloperoxidase: a model for exacerbation of lung inflammation. American Journal of Respiratory Cell and Molecular Biology. 2002;26(6):716-722.
Radi ZA, Ostroski R. Pulmonary and cardiorenal cyclooxygenase-1 (COX-1),-2 (COX-2), and microsomal prostaglandin E synthase-1 (mPGES-1) and-2 (mPGES-2) expression in a hypertension model. Mediators of Inflammation. 2007;85091. doi: 10.1155/2007/85091
Campagnolo DI, Bartlett JA, Keller SE. Influence of neurological level on immune function following spinal cord injury: a review. The Journal of Spinal Cord Medicine. 2000;23(2):121-128.
Sun D, Newman T, Perry V, Weller R. Cytokine‐induced enhancement of autoimmune inflammation in the brain and spinal cord: implications for multiple sclerosis. Neuropathology and Applied Neurobiology. 2004;30(4):374-384.
Perry VH, Newman TA, Cunningham C. The impact of systemic infection on the progression of neurodegenerative disease. Nature Reviews Neuroscience. 2003;4(2):103-112.
Pomeshchik Y, Kidin I, Korhonen P, et al. Interleukin-33 treatment reduces secondary injury and improves functional recovery after contusion spinal cord injury. Brain, Behavior, and Immunity. 2015;44:68-81.
Dinarello CA, Nold‐Petry C, Nold M, et al. Suppression of innate inflammation and immunity by interleukin‐37. European Journal of Immunology. 2016;46(5):1067-1081.
Yau SY, Li A, Hoo RL, et al. Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin. Proceedings of the National Academy of Sciences. 2014;111(44):15810-15815.
Amini PA, Akbari M, Farahabadi A, et al. Effect of estrogen therapy on TNF-α and iNOS gene expression in spinal cord injury model. Acta Medica Iranica. 2016;54(5):296-301.
David BT, Sampath S, Dong W, et al. A toll-like receptor 9 antagonist improves bladder function and white matter sparing in spinal cord injury. Journal of Neurotrauma. 2014;31(21):1800-1806.
David BT, Ratnayake A, Amarante MA, et al. A toll-like receptor 9 antagonist reduces pain hypersensitivity and the inflammatory response in spinal cord injury. Neurobiology of Disease. 2013;54:194-205.
Dicpinigaitis PV, Spungen AM, Bauman WA, Absgarten A, Almenoff PL. Inhibition of bronchial hyperresponsiveness by the GABA-agonist baclofen. Chest. 1994;106(3):758-761.
Chakrabarti M, Haque A, Banik NL, Nagarkatti P, Nagarkatti M, Ray SK. Estrogen receptor agonists for attenuation of neuroinflammation and neurodegeneration. Brain Research Bulletin. 2014;109:22-31.
Murakami T, Kanchiku T, Suzuki H, et al. Anti-interleukin-6 receptor antibody reduces neuropathic pain following spinal cord injury in mice. Experimental and Therapeutic Medicine. 2013;6(5):1194-1198.
Dulin JN, Karoly ED, Wang Y, Strobel HW, Grill RJ. Licofelone modulates neuroinflammation and attenuates mechanical hypersensitivity in the chronic phase of spinal cord injury. Journal of Neuroscience. 2013;33(2):652-664.
Park S-W, Yi J-H, Miranpuri G, et al. Thiazolidinedione class of peroxisome proliferator-activated receptor γ agonists prevents neuronal damage, motor dysfunction, myelin loss, neuropathic pain, and inflammation after spinal cord injury in adult rats. Journal of Pharmacology and Experimental Therapeutics. 2007;320(3):1002-1012.
Pearse D, Jarnagin K. Abating progressive tissue injury and preserving function after CNS trauma: the role of inflammation modulatory therapies. Current Opinion in Investigational Drugs. 2010;11(11):1207-1210.
Qu W-s, Tian D-s, Guo Z-b, et al. Inhibition of EGFR/MAPK signaling reduces microglial inflammatory response and the associated secondary damage in rats after spinal cord injury. Journal of Neuroinflammation. 2012;9(1):1-14.
Rafati DS, Geissler K, Johnson K, et al. Nuclear factor‐κB decoy amelioration of spinal cord injury‐induced inflammation and behavior outcomes. Journal of Neuroscience Research. 2008;86(3):566-580.
Esposito E, Rinaldi B, Mazzon E, et al. Anti-inflammatory effect of simvastatin in an experimental model of spinal cord trauma: involvement of PPAR-α. Journal of Neuroinflammation. 2012;9(1):1-17.
- چکیده مشاهده شده: 254 بار
- pdf دانلود شده: 18 بار