Shahid Beheshti University of Medical Sciences
  • Register
  • Login
##common.pageHeaderLogo.altText##
  • Home
  • Issues
    • Current
    • Archives
  • Journal Info
    • Aim & Scope
    • Publication Ethics
    • Editorial Team
    • Indexing/Abstracting
    • Guide for Authors
    • Submit Manuscript
    • Privacy Statement
    • Contact
  • Guide for Authors
  • Submit Manuscript
    • Statement of Authorship and Copyright
  • Manuscript Templates
    • Original/Research
    • Case Reports
    • Review Articles
  • Announcements
Advanced Search
  1. Home
  2. Archives
  3. Vol. 11 No. 2 (2023): Spring 2023
  4. Original Research Papers

Vol. 11 No. 2 (2023)

Bahman 2024

Effects of K444T, N460K, F490S, L452R, and T478R Mutations on the Solubility, Allergenicity, and Immunogenicity of SARS-CoV-2-based Spike Protein Vaccines In Silico Analysis of SARS-CoV-2 Spike Mutations

  • Asyeh Yolmeh
  • Mehdi Yolmeh
  • Bahman Aghcheli

Journal of Pediatric Nephrology, Vol. 11 No. 2 (2023), 7 Bahman 2024
https://doi.org/10.22037/jpn.v12i2.43375 Published: 2024-02-07

  • View Article
  • Download
  • Cite
  • References
  • Statastics
  • Share

Abstract

Background and Aim: The spike glycoprotein is a prime focal point for vaccine development
due to its possession of numerous T-cell and B-cell epitopes. In this study, we investigated
the effects of some important mutations (K444T, N460K, F490S, L452R, and T478R) on the
immunogenicity of the spike protein in the Omicron variant. Additionally, we forecasted the
effects of these mutations on the spike protein’s solubility, allergenicity, and immunogenicity.
Methods: In this research, we obtained 100 SARS-CoV-2 spike sequences from two
databases, namely the Global Initiative on Sharing All Influenza Data (GISAID) EpiCoV and
NCBI. We conducted a comparative analysis between the wild-type spike protein (Wuhan
accession number: NC_045512.2) and the mutated spike proteins. The analysis focused on
solubility, allergenicity, and immunogenicity. It was carried out using various bioinformatics
servers, such as Dynamut, toxin pred, soluprot, Allertop, IEDB, and Vaxigen, as well as tools,
like Mega XI and Pymol II.V.II visualizer.
Results: According to the prediction of the IEDB server, the K444T mutation is likely to
decrease the humoral immune response. In addition, spike proteins in wild types and mutants
do not have allergenic properties, and these proteins are soluble and can be expressed in
Escherichia coli.
Conclusion: Vaccines formulated using spike protein design are effective. These findings
indicate the potential for developing pan-coronavirus vaccines that offer protection not only
against SARS-CoV-2 but also against a range of other coronaviruses in the future

Keywords:
  • COVID-19
  • Structural proteins
  • Bioinformatics analysis
  • Vaccine
  • pdf

How to Cite

1.
Yolmeh A, Yolmeh M, Aghcheli B. Effects of K444T, N460K, F490S, L452R, and T478R Mutations on the Solubility, Allergenicity, and Immunogenicity of SARS-CoV-2-based Spike Protein Vaccines: In Silico Analysis of SARS-CoV-2 Spike Mutations. J Ped Nephrol [Internet]. 2024 Feb. 7 [cited 2025 Jun. 22];11(2). Available from: https://journals.sbmu.ac.ir/jpn/article/view/43375
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

References

Levin AT, Owusu-Boaitey N, Pugh S, Fosdick BK, Zwi AB,

Malani A, et al. Assessing the burden of COVID-19 in developing

countries: Systematic review, meta-analysis and public

policy implications. BMJ Glob Health. 2022; 7(5):e008477.

[DOI:10.1136/bmjgh-2022-008477] [PMID]

COVID-19 National Preparedness Collaborators. Pandemic

preparedness and COVID-19: An exploratory analysis of infection

and fatality rates, and contextual factors associated

with preparedness in 177 countries, from Jan 1, 2020, to Sept

, 2021. Lancet. 2022; 399(10334):1489-512.[DOI:10.1016/

S0140-6736(22)00172-6] [PMID]

Aghcheli B, Tahamtan A, Razavi Nikoo H, Bazi Z, Kalani

MR, Moradi A. Evaluation of mutations in SARS-CoV-2 N and

S genes on the proteins stability, immunogenicity, and pathogenicity

in Iranian patients from Golestan province. Int J Pediatr.

; 10(8):16486-97. [DOI:10.22038/ijp.2022.64880.4906]

Polatoğlu I, Oncu-Oner T, Dalman I, Ozdogan S. COVID-

in early 2023: Structure, replication mechanism, variants

of SARS-CoV-2, diagnostic tests, and vaccine & drug

development studies. MedComm (2020). 2023; 4(2):e228.

[DOI:10.1002/mco2.228] [PMID]

Pronker MF, Creutznacher R, Drulyte I, Hulswit RJG, Li Z,

van Kuppeveld FJM, et al. Sialoglycan binding triggers spike

opening in a human coronavirus. bioRxiv. Preprint. 2023;

-29. [DOI:10.1101/2023.04.20.536837]

Costello SM, Shoemaker SR, Hobbs HT, Nguyen AW, Hsieh

CL, Maynard JA, et al. The SARS-CoV-2 spike reversibly samples

an open-trimer conformation exposing novel epitopes.

Nat Struct Mol Biol. 2022; 29(3):229-38. [DOI:10.1038/s41594-

-00735-5] [PMID]

Markov PV, Ghafari M, Beer M, Lythgoe K, Simmonds P,

Stilianakis NI, et al. The evolution of SARS-CoV-2. Nat Rev

Microbiol. 2023; 21(6):361-79. [DOI:10.1038/s41579-023-

-2] [PMID]

Carabelli AM, Peacock TP, Thorne LG, Harvey WT, Hughes

J; COVID-19 Genomics UK Consortium, et al. SARS-CoV-2

variant biology: Immune escape, transmission and fitness.

Nat Rev Microbiol. 2023; 21(3):162-77. [DOI:10.1038/s41579-

-00841-7] [PMID]

Umitaibatin R, Harisna AH, Jauhar MM, Syaifie PH, Arda

AG, Nugroho DW, et al. Immunoinformatics study: Multi-

Epitope based vaccine design from SARS-CoV-2 spike glycoprotein.

Vaccines (Basel). 2023; 11(2):399. [DOI:10.3390/vaccines11020399]

[PMID]

Naz S, Aroosh A, Caner A, Şahar EA, Toz S, Ozbel Y, et al.

Immunoinformatics approach to design a multi-epitope vaccine

against Cutaneous Leishmaniasis. Vaccines (Basel). 2023;

(2):339. [DOI:10.3390/vaccines11020339] [PMID]

Sahu LK, Singh K. Cross-variant proof predictive vaccine

design based on SARS-CoV-2 spike protein using immunoinformatics

approach. Beni Suef Univ J Basic Appl Sci. 2023;

(1):5. [DOI:10.1186/s43088-023-00341-4] [PMID]

Evolution of SARS-CoV-2 Variants: Implications on immune

escape, vaccination, therapeutic and diagnostic strategies.

Viruses. 2023; 15(4):944. [DOI:10.3390/v15040944]

[PMID]

Thakur S, Sasi S, Pillai SG, Nag A, Shukla D, Singhal R,

et al. SARS-CoV-2 mutations and their impact on diagnostics,

therapeutics and vaccines. Front Med (Lausanne). 2022;

:815389. [DOI:10.3389/fmed.2022.815389] [PMID]

Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson

EC, Harrison EM, et al. SARS-CoV-2 variants, spike mutations

and immune escape. Nat Rev Microbiol. 2021; 19(7):409-

[DOI:10.1038/s41579-021-00573-0] [PMID]

Han W, Chen N, Xu X, Sahil A, Zhou J, Li Z, et al. Predicting

the antigenic evolution of SARS-COV-2 with deep learning.

Nat Commun. 2023; 14(1):3478. [DOI:10.1038/s41467-

-39199-6] [PMID]

Polatoğlu I, Oncu-Oner T, Dalman I, Ozdogan S. COVID-

in early 2023: Structure, replication mechanism, variants

of SARS-CoV-2, diagnostic tests, and vaccine & drug

development studies. MedComm (2020). 2023; 4(2):e228.----

[DOI:10.1002/mco2.228] [PMID]

Khamjan NA, Lohani M, Khan MF, Khan S, Algaissi A. Immunoinformatics

strategy to develop a novel universal multiple

epitope-based COVID-19 vaccine. Vaccines (Basel). 2023;

(6):1090. [DOI:10.3390/vaccines11061090] [PMID]

Qin J, Jeon JH, Xu J, Langston LK, Marasini R, Mou S, et

al. Design and preclinical evaluation of a universal SARSCoV-

mRNA vaccine. Front Immunol. 2023; 14:1126392.

[DOI:10.3389/fimmu.2023.1126392] [PMID]

Ojha R, Singh S, Gupta N, Kumar K, Padhi AK, Prajapati

VK. Multi-pathogen based chimeric vaccine to fight against

COVID-19 and concomitant coinfections. Biotechnol Lett.

; 45(7):779-97. [DOI:10.1007/s10529-023-03380-0] [PMID]

Moustafa RI, Faraag AHI, El-Shenawy R, Agwa MM, Elsayed

H. Harnessing immunoinformatics for developing a

multiple-epitope peptide-based vaccination approach against

SARS-CoV-2 spike protein. Saudi J Biol Sci. 2023; 30(6):103661.

[DOI:10.1016/j.sjbs.2023.103661] [PMID]

Islam MA, Shahi S, Marzan AA, Amin MR, Hasan MN,

Hoque MN, et al. Variant-specific deleterious mutations in

the SARS-CoV-2 genome reveal immune responses and potentials

for prophylactic vaccine development. Front Pharmacol.

; 14:1090717. [DOI:10.3389/fphar.2023.1090717]

[PMID]

Markov PV, Ghafari M, Beer M, Lythgoe K, Simmonds P,

Stilianakis NI, et al. The evolution of SARS-CoV-2. Nat Rev

Microbiol. 2023; 21(6):361-79.---- [DOI:10.1038/s41579-023-

-2] [PMID]

Gili R, Burioni R. SARS-CoV-2 before and after Omicron:

Two different viruses and two different diseases? J Transl

Med. 2023; 21(1):251. [DOI:10.1186/s12967-023-04095-6]

[PMID]

Arduini A, Laprise F, Liang C. SARS-CoV-2 ORF8: A rapidly

evolving immune and viral modulator in COVID-19. Viruses.

; 15(4):871. [DOI:10.3390/v15040871] [PMID]

Alquraan L, Alzoubi KH, Rababa'h SY. Mutations of

SARS-CoV-2 and their impact on disease diagnosis and severity.

Inform Med Unlocked. 2023; 39:101256. [DOI:10.1016/j.

imu.2023.101256] [PMID]

Focosi D, Quiroga R, McConnell S, Johnson MC, Casadevall

A. Convergent evolution in SARS-CoV-2 spike creates a

variant soup from which new COVID-19 waves emerge. Int J

Mol Sci. 2023; 24(3):2264. [DOI:10.3390/ijms24032264] [PMID]

Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary

Genetics Analysis Version 11. Mol Biol Evol. 2021;

(7):3022-7. [DOI:10.1093/molbev/msab120] [PMID]

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G,

Gumienny R, et al. SWISS-MODEL: Homology modelling of

protein structures and complexes. Nucleic Acids Res. 2018;

(W1):W296-303. [DOI:10.1093/nar/gky427] [PMID]

Laskowski RA, MacArthur MW, Moss DS, Thornton JM.

PROCHECK: A program to check the stereochemical quality

of protein structures. J Appl Crystallogr. 1993; 26:283-91.

[DOI:10.1107/S0021889892009944]

Rodrigues CH, Pires DE, Ascher DB. DynaMut: Predicting

the impact of mutations on protein conformation, flexibility

and stability. Nucleic Acids Res. 2018; 46(W1):W350-5.

[DOI:10.1093/nar/gky300] [PMID]

Fleri W, Paul S, Dhanda SK, Mahajan S, Xu X, Peters B, et

al. The immune epitope database and analysis resource in

epitope discovery and synthetic vaccine design. Front Immunol.

; 8:278. [DOI:10.3389/fimmu.2017.00278] [PMID]

Doytchinova IA, Flower DR. VaxiJen: A server for prediction

of protective antigens, tumour antigens and subunit

vaccines. BMC Bioinformatics. 2007; 8:4. [DOI:10.1186/1471-

-8-4] [PMID]

Hon J, Marusiak M, Martinek T, Kunka A, Zendulka J,

Bednar D, et al. SoluProt: Prediction of soluble protein expression

in Escherichia coli. Bioinformatics. 2021; 37(1):23-8.

[DOI:10.1093/bioinformatics/btaa1102] [PMID]

Dimitrov I, Bangov I, Flower DR, Doytchinova I. AllerTOP

v.2--a server for in silico prediction of allergens. J Mol Model.

; 20(6):2278. [DOI:10.1007/s00894-014-2278-5] [PMID]

Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R;

Open Source Drug Discovery Consortium, et al. In silico approach

for predicting toxicity of peptides and proteins. PLoS

One. 2013; 8(9):e73957. [DOI:10.1371/journal.pone.0073957]

[PMID]

COVID-19 Forecasting Team. Past SARS-CoV-2 infection

protection against re-infection: A systematic review and

meta-analysis. Lancet. 2023; 401(10379):833-42. [DOI:10.1016/

S0140-6736(22)02465-5] [PMID]

Tan ST, Kwan AT, Rodríguez-Barraquer I, Singer BJ, Park

HJ, Lewnard JA, et al. Infectiousness of SARS-CoV-2 breakthrough

infections and reinfections during the Omicron

wave. Nat Med. 2023; 29(2):358-65. [DOI:10.1038/s41591-022-

-x] [PMID]

Vicentini M, Venturelli F, Mancuso P, Bisaccia E, Zerbini A,

Massari M, et al. Risk of SARS-CoV-2 reinfection by vaccination

status, predominant variant and time from prior infection:

A cohort study, Reggio Emilia province, Italy, February

to February 2022. Euro Surveill. 2023; 28(13):2200494.

[DOI:10.2807/1560-7917.ES.2023.28.13.2200494] [PMID]

Rouet R, Henry JY, Johansen MD, Sobti M, Balachandran

H, Langley DB, et al. Broadly neutralizing SARS-CoV-2 antibodies

through epitope-based selection from convalescent

patients. Nat Commun. 2023; 14(1):687. [DOI:10.1038/s41467-

-36295-5] [PMID]

Park SW, Dushoff J, Grenfell BT, Weitz JS. Intermediate

levels of asymptomatic transmission can lead to the highest

epidemic fatalities. PNAS Nexus. 2023; 2(4):pgad106.

[DOI:10.1093/pnasnexus/pgad106] [PMID]

Sterlin D, Mathian A, Miyara M, Mohr A, Anna F, Claër L,

et al. IgA dominates the early neutralizing antibody response

to SARS-CoV-2. Sci Transl Med. 2021; 13(577):eabd2223.

[DOI:10.1126/scitranslmed.abd2223] [PMID]

Contreras M, Vicente J, Cerón JJ, Martinez Subiela S, Urra

JM, Rodríguez-Del-Río FJ, et al. Antibody isotype epitope

mapping of SARS-CoV-2 Spike RBD protein: Targets for

COVID-19 symptomatology and disease control. Eur J Immunol.

; 53(4):e2250206. [DOI:10.1002/eji.202250206]

[PMID]

Yerukala Sathipati S, Shukla SK, Ho SY. Tracking the amino

acid changes of spike proteins across diverse host species

of severe acute respiratory syndrome coronavirus 2. iScience.

; 25(1):103560. [DOI:10.1016/j.isci.2021.103560] [PMID]

Olukitibi TA, Ao Z, Warner B, Unat R, Kobasa D, Yao X.

Significance of conserved regions in Coronavirus spike protein

for developing a novel vaccine against SARS-CoV-2 infection.

Vaccines (Basel). 2023; 11(3):545. [DOI:10.3390/vaccines11030545]

[PMID]

Yang LQ, Sang P, Tao Y, Fu YX, Zhang KQ, Xie YH, et al.

Protein dynamics and motions in relation to their functions:

Several case studies and the underlying mechanisms. J Bio mol Struct Dyn. 2014; 32(3):372-93. [DOI:10.1080/07391102.2

770372] [PMID]

Barthe M, Hertereau L, Lamghari N, Osman-Ponchet H,

Braud VM. Receptors and cofactors that contribute to SARSCoV-

entry: Can skin be an alternative route of entry? Int J

Mol Sci. 2023; 24(7):6253. [DOI:10.3390/ijms24076253] [PMID]

Zhao Z, Zhou J, Tian M, Huang M, Liu S, Xie Y, et al. Omicron

SARS-CoV-2 mutations stabilize spike up-RBD conformation

and lead to a non-RBM-binding monoclonal antibody

escape. Nat Commun. 2022; 13(1):4958. [DOI:10.1038/s41467-

-32665-7] [PMID]

Lee WS, Wheatley AK, Kent SJ, DeKosky BJ. Antibodydependent

enhancement and SARS-CoV-2 vaccines and

therapies. Nat Microbiol. 2020; 5(10):1185-91. [DOI:10.1038/

s41564-020-00789-5] [PMID]

Dormeshkin D, Katsin M, Stegantseva M, Golenchenko

S, Shapira M, Dubovik S, et al. Design and immunogenicity

of SARS-CoV-2 DNA vaccine encoding RBD-PVXCP fusion

protein. Vaccines (Basel). 2023; 11(6):1014. [DOI:10.3390/vaccines11061014]

[PMID]

Hou XC, Xu HF, Liu Y, Sun P, Ding LW, Yue JJ, et al. A

Vaccine with multiple receptor-binding domain subunit mutations

induces broad-spectrum immune response against

SARS-CoV-2 variants of concern. Vaccines (Basel). 2022;

(10):1653. [DOI:10.3390/vaccines10101653] [PMID]

  • Abstract Viewed: 201 times
  • pdf Downloaded: 134 times

Download Statastics

  • Linkedin
  • Twitter
  • Facebook
  • Google Plus
  • Telegram

Developed By

Open Journal Systems

Information

  • For Readers
  • For Authors
  • For Librarians
  • Home
  • Archives
  • Submissions
  • About the Journal
  • Editorial Team
  • Contact

Online ISSN (e-ISSN): 2345-3176                                                                  

The "Journal of Pediatric Nephrology" is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 

 

Powered by OJSPlus