Shahid Beheshti University of Medical Sciences
  • Register
  • Login

Journal of Lasers in Medical Sciences

  1. Home
  2. Archives
  3. Vol. 13 (2022): Continues Volume
  4. Original Article

Submission Guide

Publication Fee

Author Statement Form

Peer Review Process

About the Journal

Editorial Team

Indexing/Abstracting

Myocardial Ischemia Detection by a Sensitive PumpProbe Atomic Magnetometer Cardiac Ischemia Detection by Atomic Magnetometers

  • Amin Zamani
  • Maliheh Ranjbaran
  • Mohammad Mehdi Tehranchi
  • Seyedeh Mehri Hamidi
  • Seyed Mohammad Hosein Khalkhali

Journal of Lasers in Medical Sciences, Vol. 13 (2022), , Page e24
Published 26 May 2022

  • View Article
  • Download
  • Cite
  • References
  • Statastics
  • Share

Abstract

Introduction: Magnetocardiography (MCG) based on optical atomic magnetometers has shown promise for detecting heart diseases accurately. Different methods were introduced to improve the sensitivity of detecting magnetic fields during cardiac activity.
Methods: In this paper, an optical pump-probe magnetometer operated on the ground-state Hanle effect based on the zero-field level crossing technique was developed and the laser output signal was optimized in an unshielded environment. Then, the optical magnetometer was utilized to record the simulated MCG trace of different stages of myocardial ischemia.
Results: The probe output light intensity followed the variation of cardiac magnetic field (MCG trace) generated by the Helmholtz coil accurately.
Conclusion: Based on the results, the feasibility of our highly sensitive optical magnetometer in tracing showed no change in the P-QRS-T waveform associated with ischemic heart disease (IHD), where P indicates atrial depolarization, QRS is responsible for ventricular depolarization, and T represents ventricular repolarization.


Doi:10.34172/jlms.2022.24.

Keywords:
  • Magnetocardiography (MCG), Myocardial ischemia, Optical atomic magnetometer, MCG trace, Hanle effect
  • PDF

How to Cite

Zamani, A., Ranjbaran , M., Tehranchi, M. M., Hamidi, S. M., & Khalkhali, S. M. H. (2022). Myocardial Ischemia Detection by a Sensitive PumpProbe Atomic Magnetometer: Cardiac Ischemia Detection by Atomic Magnetometers. Journal of Lasers in Medical Sciences, 13, e24. Retrieved from https://journals.sbmu.ac.ir/jlms/article/view/35004
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

References

Watanabe S, Yamada, S. Magnetocardiography in Early Detection of Electromagnetic Abnormality in Ischemic Heart Disease. J Arrhythm. 2008;24(1):4-17. doi: 10.1016/S1880-4276(08)80002-6.

Sheldon TJ, Stylos L, Nelson SD, Stadler RW, inventors; Medtronic Inc, assignee. Ischemia detection. USPTO. No. 6,937,899. August 30, 2005.

Alday E, Ni H, Zhang C, Colman M, Gan Z, Zhang H. Comparison of Electric- and Magnetic-Cardiograms Produced by Myocardial Ischemia in Models of the Human Ventricle and Torso. PLoS One. 2016; 11(8):e0160999. doi: 10.1371/-journal.pone.0160999.

Park J, Jung F. Qualitative und quantitative Beschreibung von myokardialen Ischämien mittels Magnetokardiographie / Qualitative and Quantitative Description of Myocardial Ischemia by means of Magnetocardiography. Biomed Tech (Berl). 2004; 49(10): 266-272. doi: 10.1515/bmt.2004.050.

Bick M, Sternickel K, Panaitov G, Effern A, Zhang Y, Krause H, SQUID gradiometry for magnetocardiography using different noise cancellation techniques. IEEE Trans Appl Supercond. 2001;11(1):673-676. doi: 10.1109/77.919434.

Li H, Zhang S, Zhang C, Xie X. SQUID-Based MCG Measurement Using a Full-Tensor Compensation Technique in an Urban Hospital Environment. IEEE Trans Appl Supercond. 2016; 26(6):1-5. doi: 10.1109/TASC.2016.2569507.

Robbes D. Highly sensitive magnetometers a review. Sens Actuator A Phys. 2006; 129(1-2): 86-93.doi: 10.1016/j.sna.2005.11.023.

Yang Y, Xu M, Liang A, Yin Y, Ma X, Gao Y, et al. A new wearable multichannel magnetocardiogram system with a SERF atomic magnetometer array. Sci Rep. 2021; 11(1):5564. doi: 10.1038/s41598-021-84971-7.

Wyllie R, Kauer M, Smetana G, Wakai R, Walker T. Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array. Phys Med. Biol. 2012; 57(9):2619-2632. doi: 10.1088/0031-9155/57/9/2619.

Eswaran H, Escalona-Vargas D, Bolin E, Wilson J, Lowery C. Fetal magnetocardiography using optically pumped magnetometers: a more adaptable and less expensive alternative?. Prenat. Diagn. 2017; 37(2): 193-196. doi: 10.1002/pd.4976.

Bell W. and Bloom A, Optical Detection of Magnetic Resonance in Alkali Metal Vapor. Phys Rev. 1957;107(6):1559-1565. doi: 10.1103/PhysRev.107.1559.

Dang H, Maloof A, Romalis M. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer. Appl Phys Lett. 2010; 97(15):151110. doi:10.1063/1.3491215.

Kiwoong Kim, Won-Kyu Lee, In-Seon Kim and Han Seb Moon, Atomic Vector Gradiometer System Using Cesium Vapor Cells for Magnetocardiography: Perspective on Practical Application. IEEE Trans Instrum Meas. 2007; 56(2): 458-462. doi:10.1109/TIM.2007.-890610.

Fenici R, Mashkar R. Brisinda D. Performance of miniature scalar atomic magnetometers

for magnetocardiography in an unshielded hospital laboratory for clinical electrophysiology. Eur Heart J. 2020; 41(Supplement 2): ehaa946.0386. doi: 10.1093/ehjci/-ehaa946.038.

  • Abstract Viewed: 377 times
  • PDF Downloaded: 204 times

Download Statastics

  • Linkedin
  • Twitter
  • Facebook
  • Google Plus
  • Telegram
Make a Submission
Information
  • For Readers
  • For Authors
  • For Librarians
Open Journal Systems
Keywords
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo
Browse
  • Home
  • Archives
  • Submissions
  • About the Journal
  • Editorial Team
  • Contact

Iranian Medical Laser Association 

                                        

 

This journal is distributed under the terms of CC BY-NC 3.0.
Design and publishing by SBMU journals. All credits and honors to PKP for their OJS. 

The template of this website is designed by Sinaweb