Low-Level Laser Irradiation Promotes Proliferation and Differentiation on Apical Papilla Stem Cells Low-Level Irradiation Effect on Apical Papilla Stem Cells
Journal of Lasers in Medical Sciences,
Vol. 12 (2021),
13 Bahman 2021
,
Page e75
Abstract
Introduction: Low-level laser therapy (LLLT) has been reported to improve cell proliferation and differentiation. The stem cells derived from dental apical papilla (SCAPs) are a promising therapy because they are easily obtained from immature human teeth. The effect of LLLT over SCAPs is still unknown. This study aimed to evaluate the proliferation and osteogenic potential of the SCAPs stimulated with LLLT.
Methods: SCAPs were isolated from the third molars of a healthy donor and characterized according to the minimum established criteria. SCAPs were cultured for 24 hours before being exposed to LLLT. Cells were exposed to different doses, energy, and wavelengths for selecting the irradiation parameters. SCAPs proliferation was evaluated with the MTT assay at 24 hours and 7-day post-laser exposure. VEGF and TGFβ2 expression were assessed with a specific enzyme-linked immunosorbent assay (ELISA). The osteogenic differentiation potential was analyzed with alizarin red staining, and the nodule quantification was performed by the relative optical density (ROD) analysis using Image software.
Results: The cells isolated from the apical papilla showed phenotype and stem cell properties. SCAPs irradiated with one dose at 6 J/m2 and 650 nm exhibited significantly higher proliferation (P>0.05) than the controls nonirradiated. LLLT stimulated SCAPs’ expression of factors VEGF and TGFβ2. Also, SCAPs irradiated showed higher osteogenic activity (P<0.05).
Conclusion: LLLT promotes proliferation, osteogenic differentiation, and VEGF and TGFβ2 the expression on SCAPs. LLLT is a practical approach for the preconditioning of SCAPs in vitro for future regenerative therapies. More studies are needed to determine the underlying molecular processes that determine the mechanism of the LLLT.
DOI: 10.34172/jlms.2021.75
- Low-level laser therapy; Apical papilla stem cells; Cell differentiation; Cell proliferation
How to Cite
References
Sonoyama W, Liu Y, Fang D, Yamaza T, Seo B-M, Zhang C et al. Mesenchymal Stem Cell- Mediated Functional Tooth Regeneration in Swine. PLOS ONE. 2006; ;1(1):e79. doi:10.1371/journal.pone.0000079.
Chen F-M, Shi S. Periodontal Tissue Engineering. In: Lanza R, Langer R, Vacanti J (eds). Principles of Tissue Engineering. 4 th ed. Academic Press: Boston; 2014:1507–1540. doi:10.1016/B978-0-12-398358-9.00072-0
Huang GT-J, Sonoyama W, Liu Y, Liu H, Wang S, Shi S. The Hidden Treasure in Apical Papilla: The Potential Role in Pulp/Dentin Regeneration and BioRoot Engineering. J Endod. 2008; 34(6): 645–651. doi: 10.1016/j.joen.2008.03.001
Shiehzadeh V, Aghmasheh F, Shiehzadeh F, Joulae M, Kosarieh E, Shiehzadeh F. Healing of large periapical lesions following delivery of dental stem cells with an injectable scaffold: New method and three case reports. Indian J Dent Res. 2014; 25(2): 248-53. doi: 0.4103/0970-9290.135937.
Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P et al. Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Arch Oral Biol. 2011; 56(7):709- 21. doi: 10.1016/j.archoralbio.2010.12.008.
Hilkens P, Bronckaers A, Ratajczak J, Gervois P, Wolfs E, Lambrichts I. The Angiogenic Potential of DPSCs and SCAPs in an In Vivo Model of Dental Pulp Regeneration. Stem Cells Int. 2017; 2017: ID2582080. doi: 10.1155/2017/2582080
Lovelace TW, Henry MA, Hargreaves KM, Diogenes A. Evaluation of the delivery of mesenchymal stem cells into the root canal space of necrotic immature teeth after the clinical regenerative endodontic procedure. J Endod. 2011; 37(2):133-8. doi: 10.1016/j.joen.2010.10.009.
Arbildo-Vega H, Cruzado-Oliva F, Infantes-Ruiz E. Dental stem cells and their application in dentistry. J Oral Res. 2020; 9(3):220-233. Doi:10.17126/joralres.2020.039.
Kang J, Fan W, Deng Q, He H, Huang F. Stem Cells from the Apical Papilla: A Promising Source for Stem Cell-Based Therapy. BioMed Res Int. 2019; 2019: ID6104738. doi: 10.1155/2019/6104738.
Raddall G, Mello I, Leung BM. Biomaterials and Scaffold Design Strategies for Regenerative Endodontic Therapy. Front Bioeng Biotechnol. 2019; 7:317. doi:10.3389/fbioe.2019.00317.
Wang W, Dang M, Zhang Z, Hu J, Eyster TW, Ni L et al. Dentin regeneration by stem cells of apical papilla on injectable nanofibrous microspheres and stimulated by controlled BMP-2 release. Acta Biomater. 2016; 36: 63–72. doi: 10.1016/j.actbio.2016.03.015.
Schindl A, Schindl M, Pernerstorfer-Schön H, Schindl L. Low-intensity laser therapy: a review. J Investig Med. 2000; 48: 312–326.
Pereira MCMC, de Pinho CB, Medrado ARP, Andrade Z de A, Reis SR de A. Influence of 670 nm low-level laser therapy on mast cells and vascular response of cutaneous injuries. J Photochem Photobiol B. 2010; 98(3): 188–192. doi: 10.1016/j.jphotobiol.2009.12.005.
Basso FG, Oliveira CF, Kurachi C, Hebling J, Costa CA de S. Biostimulatory effect of low-level laser therapy on keratinocytes in vitro. Lasers Med Sci. 2013; 28(2):367-74. doi: 10.1007/s10103-012-1057-8.
Kim JE, Woo YJ, Sohn KM, Jeong KH, Kang H. Wnt/β-catenin and ERK pathway activation: A possible mechanism of photobiomodulation therapy with light-emitting diodes that regulate the proliferation of human outer root sheath cells. Lasers Surg Med. 2017; 49(10): 940–947.doi: 10.1002/lsm.22736
Pasternak‐Mnich K, Ziemba B, Szwed A, Kopacz K, Synder M, Bryszewska M, et al. Effect of Photobiomodulation Therapy on the Increase of Viability and Proliferation of Human Mesenchymal Stem Cells. Lasers Surg Med .2019;51(9):824-833. doi: 10.1002/lsm.23107.
Oliveira F, Matos A, Santesso M, Tokuhara C, Leite A, Lagnato B, et al. Low intensity lasers differently induce primary human osteoblast proliferation and differentiation. J Photochem Photobiol B. 2016; 163:14-21. doi: 10.1016/j.jphotobiol.2016.08.006.
Miranda JM, de Arruda JAA, Moreno LMM, Gaião WDC, do Nascimento SVB, Silva EV de S, et al. Photobiomodulation Therapy in the Proliferation and Differentiation of Human Umbilical Cord Mesenchymal Stem Cells: An In Vitro Study. J Lasers Med Sci. 2020; 11(4): 469–474. doi: 10.34172/jlms.2020.73
AlGhamdi KM, Kumar A, Moussa NA. Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci. 2012; 27(1): 237–249. doi: 10.1007/s10103-011-0885-2.
Zaccara IM, Ginani F, Mota-Filho HG, Henriques ÁCG, Barboza CAG. Effect of low-level laser irradiation on proliferation and viability of human dental pulp stem cells. Lasers Med Sci. 2015; 30(9): 2259–2264. doi: 10.1007/s10103-015-1803-9
Ahrabi B, Rezaei Tavirani M, Khoramgah MS, Noroozian M, Darabi S, Khoshsirat S et al. The Effect of Photobiomodulation Therapy on the Differentiation, Proliferation, and Migration of the Mesenchymal Stem Cell: A Review. J Lasers Med Sci. 2019; 10 (supl.1): S96–S103. doi: 10.15171/jlms.2019.S17
Kushibiki T, Hirasawa T, Okawa S, Ishihara M. Low Reactive Level Laser Therapy for Mesenchymal Stromal Cells Therapies. Stem Cells Int. 2015; 2015: ID 974864. doi: 10.1155/2015/974864.
Park M-K, Kim S, Jeon M, Jung U-W, Lee J-H, Choi H-J, et al. Evaluation of the Apical Complex and the Coronal Pulp as a Stem Cell Source for Dentin-pulp Regeneration. J Endod. 2020; 46(2):224-231.e3. doi: 10.1016/j.joen.2019.10.025.
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8(4): 315–317. doi: 10.1080/14653240600855905.
Nada OA, El Backly RM. Stem Cells From the Apical Papilla (SCAP) as a Tool for Endogenous Tissue Regeneration. Front Bioeng Biotechnol. 2018;6:103. doi:10.3389/fbioe.2018.00103
Basso FG, Pansani TN, Turrioni AP, Bagnato VS, Hebling J, de Souza Costa CA. In vitro wound healing improvement by low-level laser therapy application in cultured gingival fibroblasts. Int J Dent. 2012;2012:719452. doi: 10.1155/2012/719452.
Ginani F, Soares DM, Barreto MP, Barboza CA. Effect of low-level laser therapy on mesenchymal stem cell proliferation: a systematic review. Lasers Med Sci. 2015;30(8):2189-94. doi: 10.1007/s10103-015-1730-9.
Kheiri A, Amid R, Kheiri L, Namdari M, Mojahedi M, Kadkhodazadeh M. Effect of Low- Level Laser Therapy on Bone Regeneration of Critical-Size Bone Defects: A Systematic Review of In Vivo Studies and Meta-Analysis. Arch Oral Biol. 2020;117:104782. doi: 10.1016/j.archoralbio.2020.104782.
Huertas RM, Luna-Bertos ED, Ramos-Torrecillas J, Leyva FM, Ruiz C, García-Martínez O. Effect and clinical implications of the low-energy diode laser on bone cell proliferation. Biol Res Nurs. 2014;16(2):191-6. doi: 10.1177/1099800413482695.
Ballini A, Mastrangelo F, Gastaldi G, Tettamanti L, Bukvic N, Cantore S et al. Osteogenic differentiation and gene expression of dental pulp stem cells under low-level laser irradiation: a good promise for tissue engineering. J Biol Regul Homeost Agents. 2015; 29:813–822.
Li W-T, Leu Y-C, Wu J-L. Red-Light Light-Emitting Diode Irradiation Increases the Proliferation and Osteogenic Differentiation of Rat Bone Marrow Mesenchymal Stem Cells. Photomed Laser Surg. 2010; 28(supl.1): S157-65. doi: 10.1089/pho.2009.2540.
Tabatabaei FS, Torshabi M, Nasab MM, Khosraviani K, Khojasteh A. Effect of low-level diode laser on proliferation and osteogenic differentiation of dental pulp stem cells. Laser Phys. 2015; 25(9): 095602. doi: 10.1088/1054-660X/25/9/095602
Yang Y, Zhu T, Wu Y, Shu C, Chen Q, Yang J, et al. Irradiation with blue light-emitting diode enhances osteogenic differentiation of stem cells from the apical papilla. Lasers Med Sci. 2020; 35(9):1981-1988. doi: 10.1007/s10103-020-02995-3.
Yuan Y, Yan G, Gong R, Zhang L, Liu T, Feng C, et al. Effects of Blue Light Emitting Diode Irradiation On the Proliferation, Apoptosis and Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells. Cell Physiol Biochem. 2017;43(1):237-246. doi: 10.1159/000480344.
Szymanska J, Goralczyk K, Klawe JJ, Lukowicz M, Michalska M, Goralczyk B, et al. Phototherapy with low-level laser influences the proliferation of endothelial cells and vascular endothelial growth factor and transforming growth factor-beta secretion. J Physiol Pharmacol. 2013;64(3):387-91.
Colaco AS. An update on the effect of low-level laser therapy on growth factors involved in oral healing. J Dent Lasers. 2018; 12(2): 46-49. doi: 10.4103/jdl.jdl_1_18
Farivar S, Malekshahabi T, Shiari R. Biological Effects of Low Level Laser Therapy. J Lasers Med Sci. 2014; 5(2): 58–62.
- Abstract Viewed: 745 times
- PDF Downloaded: 381 times