Utilization of the 1064 nm Wavelength in Photobiomodulation: A Systematic Review and Meta-Analysis The 1064 nm Wavelength in Photobiomodulation
Journal of Lasers in Medical Sciences,
Vol. 12 (2021),
13 February 2021
,
Page e86
Abstract
Introduction: Photobiomodulation or low-level laser therapy (LLLT;<0.5 W) has been used as a non-invasive treatment for various medical indications. Short (visible; 635-650 nm) and longer (invisible; 810-850 nm and 915-980 nm) near-infrared wavelengths have been commonly used, but power setting deficiencies or incorrect wavelength settings can cause negative outcomes. The 1064 nm wavelength as the longest wavelength is a relative newcomer in high-powered (>0.5 W) laser photobiomodulation therapy (HPL-PBMT) with unique biophysical characteristics.
Methods: A comprehensive search of 2016-2021 PubMed, Google Scholar, and Cochrane databases for “photobiomodulation” restricted to clinical trials for patients with a medical diagnosis was done. “1064 nm” content was identified and restricted to high-powered lasers (>0.5 watts). Cohen’s d was calculated for the effect size and the difference was determined as a measure of relative 1064 nm HPL-PBMT efficacy.
Results: The 22 independent studies meeting inclusion criteria focused on knee arthropathies, spine, shoulder/elbow, wound, gynecological, or osteoporosis with the evaluation of pain, function, quality of life, range of motion (ROM), and anatomy. Pain was reduced with statistical significance (P<0.05) in 90% of study assessments (n=20) and 100% of studies focused on the knee (n=6). Of 18 studies assessing functional outcome measures, 100% demonstrated statistically significant improvements. Follow-up assessments up to 6 months in 5 knee arthritis studies revealed long-term pain reduction after cessation of treatment. Improvements in wound healing, bone mineral density, and knee cartilage thickness were demonstrated. The largest effect sizes observed were pain reduction in knee arthritis (average Cohen’s d effect size=2.46).
Conclusion: These studies have established that 1064 nm HPL-PBMT can effectively reduce pain, increase ROM, increase functional scores, and increase the quality of life for knee osteoarthritis and spinal disorders, with limitations. More studies are needed for clinical validation of single-trial data detecting changes in musculoskeletal conditions, cartilage thickness, and bone density.
- Photobiomodulation; Musculoskeletal; Pain, Knee; Arthritis; Transcranial
How to Cite
References
Dompe C, Moncrieff L, Matys J, Grzech-Les ́niak, K, Kocherova I, Bryja A, et al. Photobiomodulation-Underlying Mechanism and Clinical Applications. J Clin Med. 2020 ;9(6): 1724.doi: 10.3390/jcm9061724.
Salehpour F, Majdi A, Pazhuhi M, Ghasemi F, Khademi M, Pashazadeh F, et al. Transcranial Photobiomodulation Improves Cognitive Performance in Young Healthy Adults: A Systematic Review and Meta-Analysis. Photobiomodul Photomed Laser Surg. 2019;37(10):635-643. doi:10.1089/photob.2019.4673
Sharma AS, Srishti, Periyasamy V, Pramanik M. Photoacoustic imaging depth comparison at 532-, 800-, and 1064-nm wavelengths: Monte Carlo simulation and experimental validation. J Biomed Optics. 2019;24(12):121904.doi:10.1117/1.JBO.24.12.121904.
Sommer AP, Schemmer P, Pavláth AE, Försterling H-D, Mester ÁR, Trelles MA. Quantum biology in low level light therapy: death of a dogma. Ann Transl Med. 2020;8(7):440. doi:10.21037/atm.2020.03.159
Marshal RP, Vlkova K. Spectral Dependence of Laser Light on Light tissue Interactions and its Influence on Laser Therapy: An Experimental Study. Insights Biomed. 2020;5(1):1-4. doi:10.36648/2572-5610.4.4.66
Pruitt T, Parvez H, Wang X, Liu H. Investigation of 1064-Nm Laser Fluence Within Tissue Phantoms for Better Prediction of Transcranial Photobiomodulation Depth. 2020. Paper presented at: Optical Tomography and Spectroscopy; 2020 Apr 20. Optical Society of America, doi:10.1364/TRANSLATIONAL.2020.JW3A.29
Kaydok E, Ordahan B, Solum S, Karahan AY. Short-term Efficacy Comparison of High-intensity and Low-intensity Laser Therapy in the Treatment of Lateral Epicondylitis: A Randomized Double-blind Clinical Study. Arch Rheumatol. 2020;35(1):60-67. doi:10.5606/ArchRheumatol.2020.7347
Ordahan B, Karahan AY, Kaydok E. The effect of high-intensity versus low-level laser therapy in the management of plantar fasciitis: a randomized clinical trial. Lasers Med Sci. 2018;33(6):1363-1369. doi:10.1007/s10103-018-2497-6
Ezzati K, Laakso E-L, Salari A, Hasannejad A, Fekrazad R, Aris A. The Beneficial Effects of High-Intensity Laser Therapy and Co-Interventions on Musculoskeletal Pain Management: A Systematic Review. J Lasers Med Sci. 2020;11(1):81-90. doi:10.15171/jlms.2020.14
Ezzati K, Laakso E-L, Saberi A, Yousefzadeh Chabok S, Nasiri E, Bakhshayesh Eghbali B. A comparative study of the dose-dependent effects of low level and high intensity photobiomodulation (laser) therapy on pain and electrophysiological parameters in patients with carpal tunnel syndrome: a randomized controlled trial. Eur J Phys Rehabil Med. 2020; 56(6):733-740. doi:10.23736/S1973-9087.19.05835-0
Henderson TA, Morries LD. Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatr Dis Treat. 2015;11:2191-2208. doi:10.2147/NDT.S78182
Simpson CR, Kohl M, Essenpreis M, Cope M. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Phys Med Biol. 1998;43(9):2465-2478. doi:10.1088/0031-9155/43/9/003
Esnouf A, Wright PA, Moore JC, Ahmed S. Depth of penetration of an 850nm wavelength low level laser in human skin. Acupunct Electrother Res. 2007;32(1-2):81-86. doi:10.3727/036012907815844165
Calderhead RG. Photobiological Basics of Photosurgery and Phototherapy. HANMI Medical Publishing; 2011.
Wang P, Li T. Which wavelength is optimal for transcranial low-level laser stimulation? J Biophotonics. 2019;12(2): e201800173. doi:10.1002/jbio.201800173
Steinberg I, Huland DM, Vermesh O, Frostig HE, Tummers WS, Gambhir SS. Photoacoustic clinical imaging. Photoacoustics. 2019;14:77-98. doi:10.1016/j.pacs.2019.05.001
Mustari A, Nishidate I, Wares MdA, et al. Agarose-based Tissue Mimicking Optical Phantoms for Diffuse Reflectance Spectroscopy. J Vis Exp. 2018;(138): 57578. doi:10.3791/57578
Toselli F, Bodechtel J, eds. Imaging Spectroscopy: Fundamentals and Prospective Applications. Springer Netherlands; 1992.
Splinter R, Hooper BA, Hooper BA. An Introduction to Biomedical Optics. CRC Press; 2006. doi:10.1201/9781420011838
Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd edition. Routledge; 1988.
Brand A, Bradley MT, Best LA, Stoica G. Multiple trials may yield exaggerated effect size estimates. J Gen Psychol. 2011;138(1):1-11. doi:10.1080/00221309.2010.520360
Yılmaz M, Eroglu S, Dundar U, Toktas H. The effectiveness of high-intensity laser therapy on pain, range of motion, functional capacity, quality of life, and muscle strength in subacromial impingement syndrome: a 3-month follow-up, double-blinded, randomized, placebo-controlled trial. Lasers Med Sci. 2021. doi:10.1007/s10103-020-03224-7
Yesil H, Dundar U, Toktas H, Eyvaz N, Yeşil M. The effect of high intensity laser therapy in the management of painful calcaneal spur: a double blind, placebo-controlled study. Lasers Med Sci. 2020;35(4):841-852. doi:10.1007/s10103-019-02870-w
Akaltun MS, Altindag O, Turan N, Gursoy S, Gur A. Efficacy of high intensity laser therapy in knee osteoarthritis: a double-blind controlled randomized study. Clin Rheumatol. 2020; 40(5):1989-1995. doi:10.1007/s10067-020-05469-7
Thabet AAE-M, Elsodany AM, Battecha KH, Alshehri MA, Refaat B. High-intensity laser therapy versus pulsed electromagnetic field in the treatment of primary dysmenorrhea. J Phys Ther Sci. 2017;29(10):1742-1748. doi:10.1589/jpts.29.1742
El-Shamy SM, Alayat MSM, Abdelgalil AA, Alshehri MA. Long-Term Effect of Pulsed Nd:YAG Laser in the Treatment of Children with Juvenile Rheumatoid Arthritis: A Randomized Controlled Trial. Photomed Laser Surg. 2018;36(8):445-451. doi:10.1089/pho.2018.4444
Alayat MS, Mohamed AA, Helal OF, Khaled OA. Efficacy of high-intensity laser therapy in the treatment of chronic neck pain: a randomized double-blind placebo-control trial. Lasers Med Sci. 2016; 31(4):687-94. doi:10.1007/s10103-016-1910-2
Ebid AA, Ibrahim AR, Omar MT, El Baky AMA. Long-term effects of pulsed high-intensity laser therapy in the treatment of post-burn pruritus: a double-blind, placebo-controlled, randomized study. Lasers Med Sci. 2017;32(3):693-701. doi:10.1007/s10103-017-2172-3
Venosa M, Romanini E, Padua R, Cerciello S. Comparison of high-intensity laser therapy and combination of ultrasound treatment and transcutaneous nerve stimulation in patients with cervical spondylosis: a randomized controlled trial. Lasers Med Sci. 2019;34(5):947-953. doi:10.1007/s10103-018-2682-7
Yilmaz M, Tarakci D, Tarakci E. Comparison of high-intensity laser therapy and combination of ultrasound treatment and transcutaneous nerve stimulation on cervical pain associated with cervical disc herniation: A randomized trial. Complement Ther Med. 2020; 49:102295. doi: 10.1016/j.ctim.2019.102295
Angelova A, Ilieva EM. Effectiveness of High Intensity Laser Therapy for Reduction of Pain in Knee Osteoarthritis. Pain Res Manag. 2016; 2016:9163618. doi:10.1155/2016/9163618
El-Shamy SM, Abdelaal AAM. Efficacy of pulsed high-intensity laser therapy on pain, functional capacity, and gait in children with haemophilic arthropathy. Disabil Rehabil. 2018;40(4):462-468. doi:10.1080/09638288.2016.1261416
Alayat MSM, Aly THA, Elsayed AEM, Fadil ASM. Efficacy of pulsed Nd:YAG laser in the treatment of patients with knee osteoarthritis: a randomized controlled trial. Lasers Med Sci. 2017;32(3):503-511. doi:10.1007/s10103-017-2141-x
A Nazari A, Moezy A, Nejati P, Mazaherinezhad A. Efficacy of high-intensity laser therapy in comparison with conventional physiotherapy and exercise therapy on pain and function of patients with knee osteoarthritis: a randomized controlled trial with 12-week follow up. Lasers Med Sci. 2019;34(3):505-516. doi:10.1007/s10103-018-2624-4
Salli A, Akkurt E, Izki AA, Şen Z, Yilmaz H. Comparison of High Intensity Laser and Epicondylitis Bandage in the Treatment of Lateral Epicondylitis. Arch Rheumatol. 2016;31(3):234-238. doi:10.5606/ArchRheumatol.2016.5793
Pekyavas NO, Baltaci G. Short-term effects of high-intensity laser therapy, manual therapy, and Kinesio taping in patients with subacromial impingement syndrome. Lasers Med Sci. 2016;31(6):1133-1141. doi:10.1007/s10103-016-1963-2
Taradaj J, Rajfur K, Shay B, Rajfur J, Ptaszkowski K, Walewicz K, et al. Photobiomodulation using high- or low-level laser irradiations in patients with lumbar disc degenerative changes: disappointing outcomes and remarks. Clin Interv Aging. 2018; 13:1445-1455. doi: 10.2147/CIA.S168094.
Abdelbasset WK, Nambi G, Alsubaie SF, Abodonya AM, Saleh AK, Ataalla NN, et al. A Randomized Comparative Study between High-Intensity and Low-Level Laser Therapy in the Treatment of Chronic Nonspecific Low Back Pain. Evid Based Complement Alternat Med. 2020; 2020:1350281. doi:10.1155/2020/1350281.
Alayat MSM, Abdel-Kafy EM, Thabet AAM, Abdel-Malek AS, Ali TH, Header EA. Long-Term Effect of Pulsed Nd-YAG Laser Combined with Exercise on Bone Mineral Density in Men with Osteopenia or Osteoporosis: 1 Year of Follow-Up. Photomed Laser Surg. 2018;36(2):105-111. doi:10.1089/pho.2017.4328
Naruseviciute D, Kubilius R. The effect of high-intensity versus low-level laser therapy in the management of plantar fasciitis: randomized participant blind controlled trial. Clin Rehabil. 2020;34(8):1072-108. doi:10.1177/0269215520929073
Chen L, Liu D, Zou L, Huang J, Chen J, Zou Y, et al. Efficacy of high intensity laser therapy in treatment of patients with lumbar disc protrusion: A randomized controlled trial. J Back Musculoskelet Rehabil. 2018;31(1):191-196. doi:10.3233/BMR-170793.
Alshami AM, Souvlis T, Coppieters MW. A review of plantar heel pain of neural origin: differential diagnosis and management. Man Ther. 2008;13(2):103-111. doi:10.1016/j.math.2007.01.014
Thabet AAE-M, Mahran HG, Ebid AA, Alshehri MA. Effect of pulsed high intensity laser therapy on delayed caesarean section healing in diabetic women. J Phys Ther Sci. 2018;30(4):570-575. doi:10.1589/jpts.30.570
THOR Photomedicine Ltd. Annette Quinn - Oral Mucositis Academy of Laser Dentistry 2016. YouTube. Accessed April 16, 2021. https://www.youtube.com/watch?v=xU5_9169dbw
Zadik Y, Arany PR, Fregnani ER, Bossi P, Antunes HS, Bensadoun RJ, et al. Systematic review of photobiomodulation for the management of oral mucositis in cancer patients and clinical practice guidelines. Support Care Cancer. 2019;27(10):3969-3983. doi:10.1007/s00520-019-04890-2
Cold Laser and High-Power Laser Therapies - Medical Clinical Policy Bulletins | Aetna. Accessed October 14, 2020. http://www.aetna.com/cpb/medical/data/300_399/0363.html
Weber GC, Firouzi P, Baran AM, Bölke E, Schrumpf H, Buhren BA, et al. Treatment of onychomycosis using a 1064-nm diode laser with or without topical antifungal therapy: a single-center, retrospective analysis in 56 patients. Eur J Med Res. 2018;23(1):53. doi: 10.1186/s40001-018-0340-y. doi:10.1186/s40001-018-0340-y
- Abstract Viewed: 1679 times
- PDF Downloaded: 810 times
- Supplement 1 Downloaded: 38 times