Effects of Two Protocols of Low-Level Laser Therapy on the Proliferation and Differentiation of Human Dental Pulp Stem Cells on Sandblasted Titanium Discs: An In Vitro Study Low-Level Laser Therapy of Stem Cell Activity on Titanium
Journal of Lasers in Medical Sciences,
Vol. 13 (2022),
10 January 2022
,
Page e1
Abstract
Introduction: Stem cell activities have different effects on tissue response and its outcomes. Low-level laser therapy (LLLT) can be considered a trigger to modify stem cell activities. The objective of the present experimental investigation was to study the effects of two protocols of LLLT on the proliferation and differentiation of human dental pulp stem cells (hDPSCs) cultured on sandblasted titanium discs.
Methods: Cells obtained from human dental pulp were seeded/cultured on titanium discs and were set in 2 main groups: (i) Radiated cells using the gallium-aluminium-arsenide (GaAlAs) diode laser at a continuous wavelength of 808 nm at 3 J/cm2 for 12 sec or 5 J/cm2 for 20 seconds, and (ii) Nonirradiated cells serving as control groups. The impact of LLLTs on hDPSC proliferation and viability
was investigated using the MTT assay after 24, 72, and 96 hours. The alkaline phosphatase activity was studied with p-nitrophenylphosphate after 14 and 28 days. The ability of hDPSCs to express osteocalcin was investigated using real-time polymerase chain reaction after 28 days, while their attachment was observed under a scanning electron microscope (SEM) after 14 and 28 days.
Results: Our study showed that LLLTs caused maximum cell proliferation in 96 hours (P<0.001) with 3 J/cm2 resulting in a higher proliferation rate. The highest activity of alkaline phosphatase and osteocalcin expression was observed in the laser radiation groups after 28 days.
Conclusion: The outcomes of the current study showed that cultured hDPSCs on sandblasted titanium discs had a tendency towards increased cellular activity in response to LLLTs. Thus, LLLTs could regulate the activities of hDPSCs on bone repair surrounding the sandblasted titanium discs.
- Differentiation; Low-level laser therapy; Proliferation; Stem cells; Titanium
How to Cite
References
Petri AD, Teixeira LN, Crippa GE, Beloti MM, Oliveira PTd, Rosa AL. Effects of low-level laser therapy on human osteoblastic cells grown on titanium. Braz Dent J. 2010;21(6):491-498. doi: 10.1590/s0103-64402010000600003.
Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001;10 Suppl 2(Suppl 2):S96-S101. doi: 10.1007/s005860100282.
Parithimarkalaignan S, Padmanabhan TV. Osseointegration: an update. J Indian Prosthodont Soc. 2013;13(1):2-6. doi:10.1007/s13191-013-0252-z.
Mitsiadis TA, Orsini G, Jimenez-Rojo L. Stem cell-based approaches in dentistry. Eur Cell Mater. 2015;30:248-57. doi: 10.22203/ecm.v030a17.
Eduardo Fde P, Bueno DF, de Freitas PM, Marques MM, Passos-Bueno MR, Eduardo Cde P, et al. Stem cell proliferation under low intensity laser irradiation: a preliminary study. Lasers Surg Med. 2008;40(6):433-8. doi: 10.1002/lsm.20646.
Amid R, Kadkhodazadeh M, Ahsaie MG, Hakakzadeh A. Effect of low level laser therapy on proliferation and differentiation of the cells contributing in bone regeneration. J Lasers Med Sci. 2014;5(4):163-70.
Boonsiriseth K, Suriyan N, Min K, Wongsirichat N. Bone and soft tissue healing in dental implantology. J Med Sci. 2014;5(5):121-126. doi: 10.14303/jmms.2014.074
Raikar S, Talukdar P, Kumari S, Panda SK, Oommen VM, Prasad A. Factors Affecting the Survival Rate of Dental Implants: A Retrospective Study. J Int Soc Prev Community Dent. 2017;7(6):351-355. doi: 10.4103/jispcd.JISPCD_380_17.
Ginani F, Soares DM, Barreto MP, Barboza CA. Effect of low-level laser therapy on mesenchymal stem cell proliferation: a systematic review. Lasers Med Sci. 2015;30(8):2189-94. doi: 10.1007/s10103-015-1730-9.
Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G, Becchetti E, et al. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation. 2005;80(6):836-42. doi: 10.1097/01.tp.0000173794.72151.88.
Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res. 2003;18(4):696-704. doi: 10.1359/jbmr.2003.18.4.696.
Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97(25):13625-30. doi: 10.1073/pnas.240309797.
Tatullo M, Marrelli M, Shakesheff KM, White LJ. Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med. 2015;9(11):1205-16. doi: 10.1002/term.1899.
Ashri NY, Ajlan SA, Aldahmash AM. Dental pulp stem cells. Biology and use for periodontal tissue engineering. Saudi Med J. 2015;36(12):1391-9. doi: 10.15537/smj.2015.12.12750.
Iaculli F, Di Filippo ES, Piattelli A, Mancinelli R, Fulle S. Dental pulp stem cells grown on dental implant titanium surfaces: An in vitro evaluation of differentiation and microRNAs expression. J Biomed Mater Res B Appl Biomater. 2017;105(5):953-965. doi: 10.1002/jbm.b.33628.
Kushibiki T, Hirasawa T, Okawa S, Ishihara M. Low reactive level laser therapy for mesenchymal stromal cells therapies. Stem Cells Int. 2015;2015: ID 974864. doi: 10.1155/2015/974864.
Fekrazad R, Asefi S, Allahdadi M, Kalhori KA. Effect of Photobiomodulation on Mesenchymal Stem Cells. Photomed Laser Surg. 2016;34(11):533-542. doi: 10.1089/pho.2015.4029.
Borzabadi-Farahani A. Effect of low-level laser irradiation on proliferation of human dental mesenchymal stem cells; a systemic review. J Photochem Photobiol B. 2016;162:577-582. doi: 10.1016/j.jphotobiol.2016.07.022.
Kemmotsu O, Sato K, Furumido H, Harada K, Takigawa C, Kaseno S, et al. Efficacy of low reactive-level laser therapy for pain attenuation of postherpetic neuralgia. Laser Therapy. 1991;3(2):71-75. doi:10.5978/islsm.91-OR-10
Ganjibakhsh M, Shahzadeh Fa, Gohari Ns, Rahmati H, Elyasi Gz, Izadpanah M, et al. Isolation, characterization and standard storage of human mesenchymal stem cell derived from adipose and dental pulp tissue. Razi Journal of Medical Sciences. 2017;24(157):35-50.[Persian]
y Baena RR, Rizzo S, Graziano A, Lupi SM. Bone regeneration in implant dentistry: Role of mesenchymal stem cells.In: Kalantar Motamedi M. A Textbook of Advanced Oral and Maxillofacial Surgery. 2016;3269. doi: 10.5772/63346
AlGhamdi KM, Kumar A, Moussa NA. Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci. 2012;27(1):237-49. doi: 10.1007/s10103-011-0885-2.
Khadra M, Lyngstadaas SP, Haanaes HR, Mustafa K. Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials. 2005;26(17):3503-9. doi: 10.1016/j.biomaterials.2004.09.033.
Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 2012;40(2):516-33. doi: 10.1007/s10439-011-0454-7.
Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G. The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts--an in vitro study. Lasers Med Sci. 2012;27(2):423-30. doi: 10.1007/s10103-011-0930-1.
Almeida-Junior LA, Marques NCT, Prado MTO, Oliveira TM, Sakai VT. Effect of single and multiple doses of low-level laser therapy on viability and proliferation of stem cells from human exfoliated deciduous teeth (SHED). Lasers Med Sci. 2019;34(9):1917-1924. doi: 10.1007/s10103-019-02836-y.
ouvet-Gerbettaz S, Merigo E, Rocca JP, Carle GF, Rochet N. Effects of low-level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoclasts. Lasers Surg Med. 2009;41(4):291-7. doi: 10.1002/lsm.20759.
Fernandes AP, Junqueira Mde A, Marques NC, Machado MA, Santos CF, Oliveira TM, et al. Effects of low-level laser therapy on stem cells from human exfoliated deciduous teeth. J Appl Oral Sci. 2016;24(4):332-7. doi: 10.1590/1678-775720150275.
Oliveira FA, Matos AA, Matsuda SS, Buzalaf MA, Bagnato VS, Machado MA, et al. Low level laser therapy modulates viability, alkaline phosphatase and matrix metalloproteinase-2 activities of osteoblasts. J Photochem Photobiol B. 2017;169:35-40. doi: 10.1016/j.jphotobiol.2017.02.020.
Medina-Huertas R, Manzano-Moreno FJ, De Luna-Bertos E, Ramos-Torrecillas J, García-Martínez O, Ruiz C. The effects of low-level diode laser irradiation on differentiation, antigenic profile, and phagocytic capacity of osteoblast-like cells (MG-63). Lasers Med Sci. 2014;29(4):1479-84. doi: 10.1007/s10103-014-1557-9.
Nakamura A, Dohi Y, Akahane M, Ohgushi H, Nakajima H, Funaoka H, et al. Osteocalcin secretion as an early marker of in vitro osteogenic differentiation of rat mesenchymal stem cells. Tissue Eng Part C Methods. 2009;15(2):169-80. doi: 10.1089/ten.tec.2007.0334.
Laakso L, Richardson C, Cramond T. Factors affecting Low Level Laser Therapy. Aust J Physiother. 1993;39(2):95-9. doi: 10.1016/S0004-9514(14)60473-6.
Chan C-W, Hussain I, Waugh DG, Lawrence J, Man H-C. Effect of laser treatment on the attachment and viability of mesenchymal stem cell responses on shape memory NiTi alloy. Mater Sci Eng C Mater Biol Appl. 2014;42:254-263. doi: 10.1016/j.msec.2014.05.022.
- Abstract Viewed: 836 times
- PDF Downloaded: 743 times