Photobiomodulation and Antimicrobial Photodynamic Influence of a 650 nm Wavelength on Staphylocoagulase and Viability of Staphylococcus aurous Antimicrobial Photodynamic Influence of 650 nm Wavelength on Staphylocoagulase Activity
Journal of Lasers in Medical Sciences,
Vol. 13 (2022),
10 January 2022
,
Page e5
Abstract
Introduction: Staphylococcus aureus is one of the critical pathological bacteria. This bacterium had developed a variety of genetic mutations that made it resistant to drugs and more harmful to humans. In addition, all attempts to design a specific vaccine against S. aureus have failed. Therefore, this experiment was designed as a trial for vaccine production, by using a photodynamic treatment (PDT) through partial biological inhibition. This study also aimed to evaluate the inhibitory effect of PDT on the total bacterial account (viability) simultaneously with SC assay.
Methods: A 650nm wavelength diode laser was used with 100 mW output power and 2 minutes of exposure time. Dye dilutions were 50, 100, 150 and 200 μg/mL. The viability of bacteria after and before laser treatment was calculated using single plate-serial dilution spotting methods. The activity of SC was detected by using human plasma for 4 hours incubation of crude-substrate interaction.
Results: The results revealed a significant decrease in enzyme activity and colony-forming units (CFU) after irradiating bacterial suspension with 150 g/mL MB, as well as a decline in CFU. However, irradiation with a laser alone showed a significant increase in SC activity and CFU for the same exposure time.
Conclusion: Besides reducing the production of SC activity, PDT significantly inhibited the viability of S. aureus. The application of MB photosensitizer at a concentration of 150 g/mL in combination with a laser wavelength of 650 nm resulted in a complete decrease in the SC activity value as well as the viability of bacteria.
- Photodynamic Therapy; Staphylocoagulase; Laser; Enzyme activity; Methylene blue
How to Cite
References
Moran GJ, Amii RN, Abrahamian FM, Talan DA. Methicillin-resistant Staphylococcus aureus in community-acquired skin infections. Emerg Infect Dis. 2005;11(6):928-30. doi: 10.3201/eid1106.040641.
Leitner G, Yadlin N, Lubashevsy E, Ezra E, Glickman A, Chaffer M, et al. Development of a Staphylococcus aureus vaccine against mastitis in dairy cows. II. Field trial. Vet Immunol Immunopathol. 2003;93(3-4):153-8. doi: 10.1016/s0165-2427(03)00062-x.
Pellegrino M, Giraudo J, Raspanti C, Nagel R, Odierno L, Primo V, et al. Experimental trial in heifers vaccinated with Staphylococcus aureus avirulent mutant against bovine mastitis. Vet Microbiol. 2008;127(1-2):186-90. doi: 10.1016/j.vetmic.2007.07.028.
Harris LG, Foster SJ, Richards RG. An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials: review. Eur Cell Mater. 2002;4:39-60. doi: 10.22203/ecm.v004a04.
Levinson W, Jawetz E. Medical Microbiology and Immunology: Examination and Board Review. 7th Ed. McGraw-Hill Companies Inc Singapore; 2002.
Bello CS, Qahtani A. Pitfalls in the routine diagnosis of Staphylococcus aureus. Afr J Biotechnol. 2004;4(1): 83-86.
Haraldsson I, Jonsson P. Histopathology and pathogenesis of mouse mastitis induced with Staphylococcus aureus mutants. J Comp Pathol. 1984;94(2):183-96. doi: 10.1016/0021-9975(84)90039-2.
Friedrich R, Panizzi P, Fuentes-Prior P, Richter K, Verhamme I, Anderson PJ, et al. Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature. 2003;425(6957):535-9. doi: 10.1038/nature01962.
Kawabata S, Morita T, Miyata T, Iwanaga S, Igarashi H. Isolation and characterization of staphylocoagulase chymotryptic fragment. Localization of the procoagulant- and prothrombin-binding domain of this protein. J Biol Chem. 1986;261(3):1427–1433. doi:10.1016/S0021-9258(17)36110-0
Heilmann C, Herrmann M, Kehrel BE, Peters G. Platelet-binding domains in 2 fibrinogen-binding proteins of Staphylococcus aureus identified by phage display. J Infect Dis. 2002;186(1):32-9. doi: 10.1086/341081.
Hemker HC, Bas BM, Muller AD. Activation of a pro-enzyme by a stoichiometric reaction with another protein. The reaction between prothrombin and staphylocoagulase. Biochim Biophys Acta. 1975;379(1):180-8. doi: 10.1016/0005-2795(75)90020-3.
Panizzi P, Friedrich R, Fuentes-Prior P, Bode W, Bock PE. The staphylocoagulase family of zymogen activator and adhesion proteins. Cell Mol Life Sci. 2004;61(22):2793-8. doi: 10.1007/s00018-004-4285-7.
Sandi NA, Wanahari TA, MacPhillamy I, Salasia SIO, Mappakaya BA, Kusumawati A. Staphylococcus aureus Vaccine Candidate from MRSA Isolates: The Prospect of a Multivalent Vaccine. Amer J Infec Dise. 2015;11(3): 54-62. doi: 10.3844/ajidsp.2015.54.62
Jadah NA, Aziz GM, Anwer AG. The Effect of 532nm Nd: YAG Pulsed Laser on the Activity of Superoxide dismutase and Alcoholdehydrogenase of Saccharomyces Cerevisiae. Iraqi J Laser. 2011;10 (1): 15-24.
Luksiene Z. Photodynamic therapy: mechanism of action and ways to improve the efficiency of treatment. Medicina (Kaunas). 2003;39(12):1137-50.
Enwemeka CS. Standard parameters in laser phototherapy. Photomed Laser Surg. 2008;26(5):411. doi: 10.1089/pho.2008.9770.
Enwemeka CS. Intricacies of dose in laser phototherapy for tissue repair and pain relief. Photomed Laser Surg. 2009;27(3):387-93. doi: 10.1089/pho.2009.2503.
Huang YY, Chen AC, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose Response. 2009;7(4):358-83. doi: 10.2203/dose-response.09-027.Hamblin.
Jenkins PA, Carroll JD. How to report low-level laser therapy (LLLT)/photomedicine dose and beam parameters in clinical and laboratory studies. Photomed Laser Surg. 2011;29(12):785-7. doi: 10.1089/pho.2011.9895.
World Association of Laser Therapy (WALT). Standards for the design and conduct of systematic reviews with low-level laser therapy for musculoskeletal pain and disorders. Photomed Laser Surg. 2006;24(6):759-60. doi: 10.1089/pho.2006.24.759.
Mahdi RA, Mohammed AA. Photodynamic Inactivation of Candida Albicans Sensitized by Malachite Green. Iraqi J Laser.2010; B9(2):31-36.
Engels W, Kamps M, van Boven CP. Influence of cultivation conditions on the production of staphylocoagulase by Staphylococcus aureus 104. J Gen Microbiol. 1978;109(2):237-43. doi: 10.1099/00221287-109-2-237.
Hendrix H, Lindhout T, Mertens K, Engels W, Hemker HC. Activation of human prothrombin by stoichiometric levels of staphylocoagulase. J Biol Chem. 1983;258(6):3637-44. doi.org/10.1016/S0021-9258(18)32713-3
Thomas P, Sekhar AC, Upreti R, Mujawar MM, Pasha SS. Optimization of single plate-serial dilution spotting (SP-SDS) with sample anchoring as an assured method for bacterial and yeast cfu enumeration and single colony isolation from diverse samples. Biotechnol Rep (Amst). 2015; 8:45-55. doi: 10.1016/j.btre.2015.08.003.
Chung W, Petrofsky JS, Laymon M, Logoluso J, Park J, Lee J, Lee H. The effects of low level laser radiation on bacterial growth. Phys Ther Rehabil Sci. 2014;3(1):20-26. doi: 10.14474/ptrs.2014.3.1.20
Baxter D. Laser terapia de baixa intensidade. In: Kitchen S, editora. Eletroterapia: prática baseada em evidências. 11ed São Paulo Manole 2003:171-90.
DeSimone NA, Christiansen C, Dore D. Bactericidal effect of 0.95-mW helium-neon and 5-mW indium-gallium-aluminum-phosphate laser irradiation at exposure times of 30, 60, and 120 seconds on photosensitized Staphylococcus aureus and Pseudomonas aeruginosa in vitro. Phys Ther. 1999;79(9):839-46. doi:10.1093/ptj/79.9.839
Andraus RAC, Maia LP, dos Santos JPM, Mesquita AR, Santos TG, Braoios A, et al. Analysis of low level laser therapy in vitro cultures of bacteria and fungi. Man TherPosturology Rehabil J. 2015; 13: 304. doi: 10.17784/mtprehabjournal.2015.13.304Man
Jadah NA. Effect of Q-Switched Nd: YAG Laser on Some Physiological Parameters of Saccharomyces cerevisiae. Master’s Thesis. Institute of Laser for Postgraduate Studies University of Baghdad; 2011. doi: 10.13140/RG.2.2.12926.61766.
Jadah NA, Aziz GM, Anwer AG. Action of Nd: YAG Laser on Growth of Saccharomyces cerevisiae. Iraqi Agric. 2011;16(2): 231-237.
Almeida A, Cunha Â, Faustino MAF, Tomé AC, Neves MGPMS. Porphyrins as Antimicrobial Photosensitizing Agents. In Photodynamic Inactivation of Microbial Pathogens: Medical and Environmental Applications; Hamblin, M., Jori, G., Eds.; Royal Society of Chemistry: Cambridge, UK 2011;1: 83–160. doi:1 0.17784/mtprehabJournal.2015.13.304
Oliveira A, Almeida A, Carvalho CM, Tomé JP, Faustino MA, Neves MG, et al. Porphyrin derivatives as photosensitizers for the inactivation of Bacillus cereus endospores. J Appl Microbiol. 2009;106(6):1986-95. doi: 10.1111/j.1365-2672.2009.04168. x.
Gomes MC, Woranovicz-Barreira SM, Faustino MA, Fernandes R, Neves MG, Tomé AC, et al. Photodynamic inactivation of Penicillium chrysogenum conidia by cationic porphyrins. Photochem Photobiol Sci. 2011;10(11):1735-43. doi.org/10.1039/C1PP05174A
Costa L, Faustino MA, Neves MG, Cunha A, Almeida A. Photodynamic inactivation of mammalian viruses and bacteriophages. Viruses. 2012;4(7):1034-1074. doi:10.3390/v4071034
Lazzeri D, Rovera M, Pascual L, Durantini EN. Photodynamic studies and photoinactivation of Escherichia coli using meso-substituted cationic porphyrin derivatives with asymmetric charge distribution. Photochem Photobiol. 2004;80(2):286-93. doi: 10.1562/2004-03-08-RA-105.
Bartolomeu M, Rocha S, Cunha Â, Neves MG, Faustino MA, Almeida A. Effect of Photodynamic Therapy on the Virulence Factors of Staphylococcus aureus. Front Microbiol. 2016; 7:267. doi: 10.3389/fmicb.2016.00267.
Branco TM, Valério NC, Jesus VIR, Dias CJ, Neves MGPMS, Faustino MAF, et al. Single and combined effects of photodynamic therapy and antibiotics to inactivate Staphylococcus aureus on skin. Photodiagnosis Photodyn Ther. 2018; 21:285-293. doi: 10.1016/j.pdpdt.2018.01.001.
Sousa V, Gomes ATPC, Freitas A, Faustino MAF, Neves MGPMS, Almeida A. Photodynamic Inactivation of Candida albicans in Blood Plasma and Whole Blood. Antibiotics (Basel). 2019;8(4):221. doi: 10.3390/antibiotics8040221.
Almeida J, Tomé JP, Neves MG, Tomé AC, Cavaleiro JA, Cunha Â, et al. Photodynamic inactivation of multidrug-resistant bacteria in hospital wastewaters: influence of residual antibiotics. Photochem Photobiol Sci. 2014;13(4):626-33. doi: 10.1039/c3pp50195g.
Gulías Ò, McKenzie G, Bayó M, Agut M, Nonell S. Effective Photodynamic Inactivation of 26 Escherichia coli Strains with Different Antibiotic Susceptibility Profiles: A Planktonic and Biofilm Study. Antibiotics. 2020; 9(3):98. doi:10.3390/antibiotics9030098
Dai T, Tegos GP, Zhiyentayev T, Mylonakis E, Hamblin MR. Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model. Lasers Surg Med. 2010;42(1):38-44. doi: 10.1002/lsm.20887.
Tavares A, Dias SR, Carvalho CMB, Faustino MAF, Tomé JPC, Neves MGPMS, et al. Mechanisms of photodynamic inactivation of a Gram-negative recombinant bioluminescent bacterium by cationic porphyrins. Photochem Photobiol Sci. 2011; 10(10):1659–1669. doi: 10.1039/c1pp05097d.
Costa L, Faustino MA, Tomé JP, Neves MG, Tomé AC, Cavaleiro JA, et al. Involvement of type I and type II mechanisms on the photoinactivation of non-enveloped DNA and RNA bacteriophages. J Photochem Photobiol B. 2013; 120:10-6. doi: 10.1016/j.jphotobiol.2013.01.005.
Adelaide A. Photodynamic Therapy in the Inactivationof Microorganisms. Antibiotics. 2020; 9(4): 138. doi: 10.3390/antibiotics9040138
Fatma V, Wanessa CMA de M, Pinar A, Daniela V, Magesh S, Asheesh G, et al. Antimicrobial strategies centered around reactive oxygen species – bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev. 2013; 37(6): 955–989. doi: 10.1111/1574-6976.12026
Bertoloni G, Sacchetto R, Baro E, Ceccherelli F, Jori G. Biochemical and morphological changes in Escherichia coli irradiated by coherent and non-coherent 632.8 nm light. J Photochem Photobiol B. 1993;18(2-3):191-6. doi: 10.1016/1011-1344(93)80062-e.
- Abstract Viewed: 655 times
- PDF Downloaded: 338 times
- Supplement 1 Downloaded: 37 times