• Register
  • Login

Iranian Journal of Pharmaceutical Sciences

  • Home
  • Journal Info
    • About the Journal
    • Aims and Scope
    • Editorial Team
    • Indexing & Abstracting
    • Privacy Statement
    • Contact us
  • Issues
    • Current
    • Archives
  • New Submissions
  • Author Guidelines
  • Policies & Process
    • Peer Review
    • Publication Ethics
    • Open Access Policy
    • Plagiarism
    • Retraction Policies
    • Archiving
  • Ethical Considration
Advanced Search
  1. Home
  2. Archives
  3. Vol. 19 No. 4 (2023): IJPS_Volume 19_Issue 4 (2023)
  4. Research/Original Articles

Vol. 19 No. 4 (2023)

April 2024

Synthesis and Evaluation of a Polycaprolactone-methoxy-Polyethyleneglycol Copolymer Nano-system for Curcumin and Tacrolimus Release Drug Delivery Nano-system

  • Anita Shahifar
  • Hamed Bagheri
  • Sogol Namnabat

Iranian Journal of Pharmaceutical Sciences, Vol. 19 No. 4 (2023), 24 April 2024 , Page 304- 313
https://doi.org/10.22037/ijps.v19i4.43815 Published: 2023-10-01

  • View Article
  • Download
  • Cite
  • References
  • Statastics
  • Share

Abstract

Conventional drug delivery methods are not highly efficient due to low bioavailability, poor absorption, and inadequate retention time of some medications. In addition, to achieve the appropriate therapeutic effect, a higher dosage of drugs might be administrated, which may result in undesired side effects. In order to overcome these challenges, utilizing drug delivery systems such as micelles could be beneficial. Micelles are amphiphilic compounds with a hydrophilic shell and a hydrophobic core. Micelles could encapsulate hydrophobic drugs such as Curcumin and tacrolimus, anti-inflammatory and immunosuppressive agents, respectively, and improve their bioavailability. This study synthesized a Methoxy-Polyethyleneglycol-Polycaprolactone biodegradable nano-system by precipitation method for curcumin and tacrolimus encapsulation. Afterward, micelles were characterized for size, morphology, drug loading capacity, and drug release. As a result, the average molecular weight of the copolymer was 36744 g/mol. The nano-system size was analyzed using Dynamic light scattering and Atomic force microscopy tests, resulting in 137.6 nm and 37.9 nm, respectively. In addition, the drug loading efficiency was 42.06%, and after 96 hours, about 0.7mg of Curcumin was released while no Tacrolimus was detected. Since Tacrolimus is retained in the system, we can conclude that this system is not suitable for the simultaneous release of two drugs.

Keywords:
  • Nanosystem
  • Micelles
  • Caprolactone
  • Polyethylene glycol
  • Curcumin
  • Tacrolimus
  • Drug delivery
  • IJPS_Volume19_Issue4_Pages 304-313

How to Cite

Shahifar, A., Bagheri, H., & Namnabat, S. (2023). Synthesis and Evaluation of a Polycaprolactone-methoxy-Polyethyleneglycol Copolymer Nano-system for Curcumin and Tacrolimus Release: Drug Delivery Nano-system. Iranian Journal of Pharmaceutical Sciences, 19(4), 304–313. https://doi.org/10.22037/ijps.v19i4.43815
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

References

Gayathri K, Bhaskaran M, Selvam C, Thilagavathi R. Nano formulation approaches for curcumin delivery- a review. J Drug Deliv Sci Technol (2023) 82 (104326):104326.

Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: Problems and promises. Mol Pharm (2007) 4 (6):807–18.

Peng Y, Ao M, Dong B, Jiang Y, Yu L, Chen Z, et al. Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures. Drug Des Devel Ther (2021) 15:4503–25.

Zahra T, Sarwar HS, Sarfraz M, Zaman M, Ahmad H, Jalil A, et al. Thiomer coated solid lipid nanoparticles for the enhanced oral bioavailability of tacrolimus: in-vitro and in-vivo evaluation. J Drug Deliv Sci Technol (2022) 77 (103892):103892.

Antignac M, Barrou B, Farinotti R, Lechat P, Urien S. Population pharmacokinetics and bioavailability of tacrolimus in kidney transplant patients. Br J Clin Pharmacol (2007) 64 (6):750–7.

Croy SR, Kwon GS. Polymeric micelles for drug delivery. Curr Pharm Des (2006) 12(36):4669–84.

Janas C, Mostaphaoui Z, Schmiederer L, Bauer J, Wacker MG. Novel polymeric micelles for drug delivery: Material characterization and formulation screening. Int J Pharm (2016) 509 (1–2):197–207.

Cai Y, Qi J, Lu Y, He H, Wu W. The in vivo fate of polymeric micelles. Adv Drug Deliv Rev (2022) 188 (114463):114463.

Kaur J, Mishra V, Singh SK, Gulati M, Kapoor B, Chellappan DK, et al. Harnessing amphiphilic polymeric micelles for diagnostic and therapeutic applications: Breakthroughs and bottlenecks. J Control Release (2021) 334:64–95.

Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, et al. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release (2021) 332:312–36.

Aziz ZABA, Ahmad A, Mohd-Setapar SH, Hassan H, Lokhat D, Kamal MA, et al. Recent advances in drug delivery of polymeric nano-micelles. Curr Drug Metab (2017) 18 (1):16–29.

Christen M-O, Vercesi F. Polycaprolactone: How a well-known and futuristic polymer has become an innovative collagen-stimulator in esthetics. Clin Cosmet Investig Dermatol (2020) 13:31–48.

Kwon GS, Okano T. Polymeric micelles as new drug carriers. Adv Drug Deliv Rev (1996) 21 (2):107–16.

Miyata K, Christie RJ, Kataoka K. Polymeric micelles for nano-scale drug delivery. React Funct Polym (2011) 71 (3):227–34.

Danafar H. MPEG–PCL copolymeric nanoparticles in drug delivery systems. Cogent Med (2016) 3 (1):1142411.

Kheiri Manjili H, Ghasemi P, Malvandi H, Mousavi MS, Attari E, Danafar H. Pharmacokinetics and in vivo delivery of Curcumin by copolymeric mPEG-PCL micelles. Eur J Pharm Biopharm (2017) 116: 17–30.

Pu L, Yu H, Du J, Zhang Y, Chen S. 2020. Hydrotalcite-PLGA composite nanoparticles for loading and delivery of danshensu. RSC Adv (2020) 10 (37): 22010–22018.

Liu H, Xu H, Jiang Y, Hao S, Gong F, Mu H, Liu K. Preparation, characterization, in vivo pharmacokinetics, and biodistribution of polymeric micellar dimethoxyCurcumin for tumor targeting. Int J Nanomedicine (2015) 10: 6395–6410.

Derrick MR, Dusan Stulik, Landry JM. Infrared spectroscopy in conservation science., Getty Conservation Institute: Los Angeles, Calif (1999).

Gao X, et al. Preparation, characterization and application of star-shaped PCL/PEG micelles for the delivery of doxorubicin in the treatment of colon cancer. Int J Nanomedicine (2013) 8: 971–982.

Kim MS, et al. Preparation and characterization of MPEG–PCL diblock copolymers with thermo-responsive sol–gel–sol phase transition. J Polym Sci A Polym Chem (2006) 44 (18): 5413–5423.

Cerrai P, Tricoli M, Andruzzi F, Paci Maurizio, Paci Massimo. Polyether-polyester block copolymers by non-catalysed polymerization of ɛ-caprolactone with poly(ethylene glycol). Polymer (Guildf) (1989) 30 (2): 338–343.

Mohanty AK, Jana U, Manna PK, Mohanta GP. Synthesis and evaluation of MePEG-PCL diblock copolymers: surface properties and controlled release behavior. Prog Biomater (2015) 4 (2-4): 89-100.

Barghi L, Asgari D, Barar J, Valizadeh H. Synthesis of PCEC Copolymers with Controlled Molecular Weight Using Full Factorial Methodology. Adv Pharm Bull (2015) 5 (1): 51-56.

Gou M, et al. Self-assembled hydrophobic honokiol loaded MPEG-PCL diblock copolymer micelles. Pharm Res (2009) 26 (9): 2164-2173.

Bernabeu E, Gonzalez L, Legaspi MJ, Moretton MA, Chiappetta DA. Paclitaxel-Loaded TPGS-b-PCL Nanoparticles: In Vitro Cytotoxicity and Cellular Uptake in MCF-7 and MDA-MB-231 Cells versus mPEG-b-PCL Nanoparticles and Abraxane®. J Nanosci Nanotechnol. (2016) 16 (1): 160-170.

Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics (2018) 10 (2):57.

Zamani M, Shirinzadeh A, Aghajanzadeh M, Andalib S, Danafar H. In vivo study of mPEG-PCL as a nanocarriers for anti-inflammatory drug delivery of simvastatin. Pharm Dev Technol (2019) 24 (6): 663-670.

Danafar H, Davaran S, Rostamizadeh K, Valizadeh H, Hamidi M. Biodegradable m-PEG/PCL Core-Shell Micelles: Preparation and Characterization as a Sustained Release Formulation for Curcumin . Adv Pharm Bull (2014) 4 (Suppl 2): 501-510.

Wang Y, Wang C, Fu S, Liu Q, Dou D, Lv H, Fan M, Guo G, Luo F, Qian Z. Preparation of Tacrolimus loaded micelles based on poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone). Int J Pharm (2011) 407 (1-2): 184-189.

  • Abstract Viewed: 286 times
  • IJPS_Volume19_Issue4_Pages 304-313 Downloaded: 136 times

Download Statastics

  • Linkedin
  • Twitter
  • Facebook
  • Google Plus
  • Telegram

Developed By

Open Journal Systems

Information

  • For Readers
  • For Authors
  • For Librarians
  • Home
  • Archives
  • Submissions
  • About the Journal
  • Editorial Team
  • Contact

Creative Commons License
This journal (and its contents) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Print ISSN: 1735-2444

Online ISSN: 2252-0457

Powered by OJSPlus