Effect of Nucleus Basalis Magnocellularis Lesions on Memory and Hippocampal Brain-Derived Neurotrophic Factor, IL-1β, Glucose, and Corticosterone Levels in Adult Rats
International Clinical Neuroscience Journal,
Vol. 8 No. 2 (2021),
27 March 2021
,
Page 67-75
Abstract
Background: The nucleus basalis magnocellularis (NBM) sends projections to the hippocampus that are implicated in learning and memory formation. Despite ample evidence proposing that cognitive function impairment related to neurodegeneration, it may result from alteration of biochemical substances. We aimed to investigate the effects of NBM lesions on the hippocampal interleukin-1beta (IL-1β), brain-derived neurotrophic factor (BDNF), and corticosterone levels, as inflammation markers, and hallmarks of neurodegeneration, stress, and metabolic status.
Methods: Thirty-six male Wistar rats were randomly put in control, sham, and NBM-lesioned groups. After inducing the lesion using an intra-NBM injection of 10 μg ibotenic acid (5 μg/μL, each side) in rats, memory was estimated using the passive avoidance test. Moreover, serum and hippocampal IL-1β levels, as well as the hippocampal corticosterone, BDNF, and glucose levels were measured after 42 days.
Results: Findings indicated a significant impairment of retention at different intervals in the NBM-lesioned group. BDNF decreased whereas corticosterone, glucose, and IL-1β levels increased in the hippocampus. Also, the levels of serum IL-1β, hippocampal BDNF, corticosterone, and glucose had significant correlations with hippocampal IL-1β levels.
Conclusion: The synchronous alterations of some hippocampal factors, including BDNF, corticosterone, IL-1β, and glucose, caused by NBM lesion suggest that their interaction might play a significant role in neurodegeneration and relevant learning and memory impairments.
- Nucleus basalis magnocellularis
- Hippocampus
- Neurotrophic factor
- Cytokine
- Stress
How to Cite
References
Ballinger EC, Ananth M, Talmage DA, Role LW. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron. 2016;91(6):1199-218. doi: 10.1016/j. neuron.2016.09.006.
Vedhara K, Hyde J, Gilchrist ID, Tytherleigh M, Plummer S. Acute stress, memory, attention and cortisol. Psychoneuroendocrinology. 2000;25(6):535-49. doi: 10.1016/s0306-4530(00)00008-1.
Kim EJ, Pellman B, Kim JJ. Stress effects on the hippocampus: a critical review. Learn Mem. 2015;22(9):411-6. doi: 10.1101/ lm.037291.114.
Cañavate M, García de Galdeano A, Arteaga O, Montalvo H, Revuelta M, Hilario E, et al. Cross-talk between nervous and immune systems: cytokines modulating morphology and function of both systems under stress conditions. Microscopy: Advances in Scientific Research and Education. 2014;1:414- 21.
de Quervain DJ, Roozendaal B, McGaugh JL. Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature. 1998;394(6695):787-90. doi: 10.1038/29542.
French RA, VanHoy RW, Chizzonite R, Zachary JF, Dantzer R, Parnet P, et al. Expression and localization of p80 and p68 interleukin-1 receptor proteins in the brain of adult mice. J Neuroimmunol. 1999;93(1-2):194-202. doi: 10.1016/s0165- 5728(98)00224-0.
Rachal Pugh C, Fleshner M, Watkins LR, Maier SF, Rudy JW. The immune system and memory consolidation: a role for the cytokine IL-1beta. Neurosci Biobehav Rev. 2001;25(1):29-41. doi: 10.1016/s0149-7634(00)00048-8.
Lee JW, Lee YK, Yuk DY, Choi DY, Ban SB, Oh KW, et al. Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation. 2008;5:37. doi: 10.1186/1742-2094-5-37.
Zhao G, Dharmadhikari G, Maedler K, Meyer-Hermann M. Possible role of interleukin-1β in type 2 diabetes onset and implications for anti-inflammatory therapy strategies. PLoS Comput Biol. 2014;10(8):e1003798. doi: 10.1371/journal. pcbi.1003798.
Vounotrypidis P, Kouklakis G, Anagnostopoulos K, Zezos P, Polychronidis A, Maltezos E, et al. Interleukin-1 associations in inflammatory bowel disease and the enteropathic seronegative spondylarthritis. Auto Immun Highlights. 2013;4(3):87-94. doi: 10.1007/s13317-013-0049-4.
Liao Z, Xiao HT, Zhang Y, Tong RS, Zhang LJ, Bian Y, et al. IL-1β: a key modulator in asthmatic airway smooth muscle hyper-reactivity. Expert Rev Respir Med. 2015;9(4):429-36. doi: 10.1586/17476348.2015.1063422.
Kay J, Calabrese L. The role of interleukin-1 in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford). 2004;43 Suppl 3:iii2-iii9. doi: 10.1093/rheumatology/keh201.
Gonzalez P, Machado I, Vilcaes A, Caruso C, Roth GA, Schiöth H, et al. Molecular mechanisms involved in interleukin 1-beta (IL-1β)-induced memory impairment. Modulation by alpha-melanocyte-stimulating hormone (α-MSH). Brain Behav Immun. 2013;34:141-50. doi: 10.1016/j.bbi.2013.08.007.
Goshen I, Yirmiya R. Interleukin-1 (IL-1): a central regulator of stress responses. Front Neuroendocrinol. 2009;30(1):30-45. doi: 10.1016/j.yfrne.2008.10.001.
Tong L, Prieto GA, Kramár EA, Smith ED, Cribbs DH, Lynch G, et al. Brain-derived neurotrophic factor-dependent synaptic plasticity is suppressed by interleukin-1β via p38 mitogen-activated protein kinase. J Neurosci. 2012;32(49):17714-24. doi: 10.1523/jneurosci.1253-12.2012.
Tyler WJ, Alonso M, Bramham CR, Pozzo-Miller LD. From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem. 2002;9(5):224-37. doi: 10.1101/ lm.51202.
Lu Y, Christian K, Lu B. BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem. 2008;89(3):312-23. doi: 10.1016/j. nlm.2007.08.018.
Heldt SA, Stanek L, Chhatwal JP, Ressler KJ. Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol Psychiatry. 2007;12(7):656-70. doi: 10.1038/sj.mp.4001957.
Lee HJ, Seo HI, Cha HY, Yang YJ, Kwon SH, Yang SJ. Diabetes and Alzheimer’s disease: mechanisms and nutritional aspects. Clin Nutr Res. 2018;7(4):229-40. doi: 10.7762/ cnr.2018.7.4.229.
Mainardi M, Fusco S, Grassi C. Modulation of hippocampal neural plasticity by glucose-related signaling. Neural Plast. 2015;2015:657928. doi: 10.1155/2015/657928.
Silva-Adaya D, Pérez-De La Cruz V, Herrera-Mundo MN, Mendoza-Macedo K, Villeda-Hernández J, Binienda Z, et al. Excitotoxic damage, disrupted energy metabolism, and oxidative stress in the rat brain: antioxidant and neuroprotective effects of L-carnitine. J Neurochem. 2008;105(3):677-89. doi: 10.1111/j.1471-4159.2007.05174.x.
Hosseini N, Alaei H, Reisi P, Radahmadi M. The effect of treadmill running on memory before and after the NBM-lesion in rats. J Bodyw Mov Ther. 2013;17(4):423-9. doi: 10.1016/j. jbmt.2012.12.005.
Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition. Elsevier; 2006.
Vitkovic L, Bockaert J, Jacque C. “Inflammatory” cytokines: neuromodulators in normal brain? J Neurochem. 2000;74(2):457-71. doi: 10.1046/j.1471- 4159.2000.740457.x.
Eriksson C, Van Dam AM, Lucassen PJ, Bol JG, Winblad B, Schultzberg M. Immunohistochemical localization of interleukin-1beta, interleukin-1 receptor antagonist and interleukin-1beta converting enzyme/caspase-1 in the rat brain after peripheral administration of kainic acid. Neuroscience. 1999;93(3):915-30. doi: 10.1016/s0306-4522(99)00178-5.
Pugh CR, Nguyen KT, Gonyea JL, Fleshner M, Wakins LR, Maier SF, et al. Role of interleukin-1 beta in impairment of contextual fear conditioning caused by social isolation. Behav Brain Res. 1999;106(1-2):109-18. doi: 10.1016/s0166- 4328(99)00098-4.
Goshen I, Kreisel T, Ounallah-Saad H, Renbaum P, Zalzstein Y, Ben-Hur T, et al. A dual role for interleukin-1 in hippocampal-dependent memory processes. Psychoneuroendocrinology. 2007;32(8-10):1106-15. doi: 10.1016/j.psyneuen.2007.09.004.
Zelazowski P, Patchev VK, Zelazowska EB, Chrousos GP, Gold PW, Sternberg EM. Release of hypothalamic corticotropin-releasing hormone and arginine-vasopressin by interleukin 1 beta and alpha MSH: studies in rats with different susceptibility to inflammatory disease. Brain Res. 1993;631(1):22-6. doi: 10.1016/0006-8993(93)91181-q.
Mark GP, Rada PV, Shors TJ. Inescapable stress enhances extracellular acetylcholine in the rat hippocampus and prefrontal cortex but not the nucleus accumbens or amygdala. Neuroscience. 1996;74(3):767-74. doi: 10.1016/0306- 4522(96)00211-4.
Kaufer D, Friedman A, Seidman S, Soreq H. Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature. 1998;393(6683):373-7. doi: 10.1038/30741.
Popoli M, Yan Z, McEwen BS, Sanacora G. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci. 2011;13(1):22-37. doi: 10.1038/nrn3138.
Han JS, Bizon JL, Chun HJ, Maus CE, Gallagher M. Decreased glucocorticoid receptor mRNA and dysfunction of HPA axis in rats after removal of the cholinergic innervation to hippocampus. Eur J Neurosci. 2002;16(7):1399-404. doi: 10.1046/j.1460-9568.2002.02191.x.
Helm KA, Han JS, Gallagher M. Effects of cholinergic lesions produced by infusions of 192 IgG-saporin on glucocorticoid receptor mRNA expression in hippocampus and medial prefrontal cortex of the rat. Neuroscience. 2002;115(3):765- 74. doi: 10.1016/s0306-4522(02)00487-6.
Lee B, Sur BJ, Kwon S, Jung E, Shim I, Lee H, et al. Acupuncture stimulation alleviates corticosterone-induced impairments of spatial memory and cholinergic neurons in rats. Evid Based Complement Alternat Med. 2012;2012:670536. doi: 10.1155/2012/670536.
Lim CS, Kim YJ, Hwang YK, Bañuelos C, Bizon JL, Han JS. Decreased interactions in protein kinase A-glucocorticoid receptor signaling in the hippocampus after selective removal of the basal forebrain cholinergic input. Hippocampus. 2012;22(3):455-65. doi: 10.1002/hipo.20912.
Lee SY, Cho WH, Lee YS, Han JS. Impact of chronic stress on the spatial learning and GR-PKAc-NF-κB signaling in the hippocampus and cortex in rats following cholinergic depletion. Mol Neurobiol. 2018;55(5):3976-89. doi: 10.1007/ s12035-017-0620-5.
Belanoff JK, Gross K, Yager A, Schatzberg AF. Corticosteroids and cognition. J Psychiatr Res. 2001;35(3):127-45. doi: 10.1016/s0022-3956(01)00018-8.
Woolley CS, Gould E, McEwen BS. Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res. 1990;531(1- 2):225-31. doi: 10.1016/0006-8993(90)90778-a.
Luine VN, Spencer RL, McEwen BS. Effects of chronic corticosterone ingestion on spatial memory performance and hippocampal serotonergic function. Brain Res. 1993;616(1- 2):65-70. doi: 10.1016/0006-8993(93)90193-q.
Vogel S, Schwabe L. Learning and memory under stress: implications for the classroom. NPJ Sci Learn. 2016;1:16011. doi: 10.1038/npjscilearn.2016.11.
Radahmadi M, Alaei H, Sharifi MR, Hosseini N. Effects of different timing of stress on corticosterone, BDNF and memory in male rats. Physiol Behav. 2015;139:459-67. doi: 10.1016/j.physbeh.2014.12.004.
Mizuno M, Yamada K, Maekawa N, Saito K, Seishima M, Nabeshima T. CREB phosphorylation as a molecular marker of memory processing in the hippocampus for spatial learning. Behav Brain Res. 2002;133(2):135-41. doi: 10.1016/s0166- 4328(01)00470-3.
Kunugi H, Hori H, Adachi N, Numakawa T. Interface between hypothalamic-pituitary-adrenal axis and brain-derived neurotrophic factor in depression. Psychiatry Clin Neurosci. 2010;64(5):447-59. doi: 10.1111/j.1440-1819.2010.02135.x.
Grimsholm O, Rantapää-Dahlqvist S, Dalén T, Forsgren S. BDNF in RA: downregulated in plasma following anti-TNF treatment but no correlation with inflammatory parameters. Clin Rheumatol. 2008;27(10):1289-97. doi: 10.1007/s10067- 008-0910-4.
Etnier JL, Wideman L, Labban JD, Piepmeier AT, Pendleton DM, Dvorak KK, et al. The effects of acute exercise on memory and brain-derived neurotrophic factor (BDNF). J Sport Exerc Psychol. 2016;38(4):331-40. doi: 10.1123/jsep.2015-0335.
Schaaf MJ, De Kloet ER, Vreugdenhil E. Corticosterone effects on BDNF expression in the hippocampus. Implications for memory formation. Stress. 2000;3(3):201-8. doi: 10.3109/10253890009001124.
Hueston CM, Cryan JF, Nolan YM. Stress and adolescent hippocampal neurogenesis: diet and exercise as cognitive modulators. Transl Psychiatry. 2017;7(4):e1081. doi: 10.1038/ tp.2017.48.
Barrientos RM, Sprunger DB, Campeau S, Watkins LR, Rudy JW, Maier SF. BDNF mRNA expression in rat hippocampus following contextual learning is blocked by intrahippocampal IL-1beta administration. J Neuroimmunol. 2004;155(1- 2):119-26. doi: 10.1016/j.jneuroim.2004.06.009.
Camandola S, Mattson MP. Brain metabolism in health, aging, and neurodegeneration. EMBO J. 2017;36(11):1474-92. doi: 10.15252/embj.201695810.
Scholey A, Camfield D, Macpherson H, Owen L, Nguyen P, Stough C, et al. Hippocampal involvement in glucose facilitation of recognition memory: event-related potential components in a dual-task paradigm. Nutr Aging. 2015;3(1):9- 20. doi: 10.3233/nua-140042.
Del Rey A, Roggero E, Randolf A, Mahuad C, McCann S, Rettori V, et al. IL-1 resets glucose homeostasis at central levels. Proc Natl Acad Sci U S A. 2006;103(43):16039-44. doi: 10.1073/pnas.0607076103.
- Abstract Viewed: 176 times
- PDF Downloaded: 237 times