Low-Level Laser Therapy in Russia: History, Science and Practice
Journal of Lasers in Medical Sciences,
Vol. 8 No. 2 (2017),
8 April 2017
,
Page 56-65
Abstract
In Russia (formerly USSR) study of biomodulation action (BMA) mechanisms of low-intensity laser irradiation (LILI) began in 1964, immediately after the development of lasers. During the period from 1965 to 1972 several dozens of scientific conferences were held, hundreds of studies were published. Generally, secondary mechanisms and results of LILI effect on patients with various diseases were studied. This data was immediately implemented into practical medicine in the fields of oncology, surgery, dermatology and dentistry, and since 1974 low level laser therapy (LLLT) is included in the standard of state medical care. For 50 years no less than 1000 books were published (monographs, collections, methodical and clinical materials), thousands of researches were carried out. Primary mechanism and patterns of interaction of LILI with acceptors within cells can be represented in the following order: absorption of photon’s energy – emergence of a local temperature gradient – release of Ca2+ from intracellular stores – stimulating Ca2+–dependent processes. Understanding of this process allowed the explanation of all known secondary effects, optimized methods and extremely increased effectiveness of LLLT. Owing to the knowledge of BMA mechanisms of LILI, numerous associated and combined LLLT techniques were developed and are widely used nowadays: locally, on the projection of internal organs, laser acupuncture, reflexology, intracavitary, transdermal and intravenous laser blood illumination, magnetic-laser therapy, laser phoresis, laser-vacuum massage, biomodulation, etc. About 400 000 laser therapeutic devices are used in Russian practical healthcare. Unique, having no analogues in the world devices, are produced – red pulsed laser diodes (wavelength 635 nm, power 5-40 W, pulse duration 100 ns, frequency 10 000 Hz) are designed specially for effective laser therapy.
- Low-level laser therapy
- Laser biomodulation
- Mechanisms and methods
- Russia
How to Cite
References
Tunér J, Hode L. It’s all in the parameters: a critical analysis of some well-known negative studies on lowlevel laser therapy. J Clin Laser Med Surg. 1998;16(5):245-248.
Ohshiro Т. Light and life: a review of low reactive-level laser therapy, following 13 year’s experience in over 12000 patients. Laser Ther. 1993;5(1):5-22.
Zhou YC. LLLT in the people’s republic of China. Laser Ther. 1991;3(1):5-9.
McKibbin LS, Downie R. LLLT in Canada. Laser Ther. 1991,3(1):45-47.
Baxter GD, Bell AJ, Allen JM, Ravey J. Low level laser therapy: current clinical practice in Northern Ireland. Physiotherapy. 1991;77(3):171-8.
Lap VC, Duet TC, Cuong DK. Low-level laser therapy: the experience in Vietnam. Laser Ther. 1994;6(1):62.
Ailioaie C, Chiran DA, Ailioaie LM. Laser blood irradiation in juvenile idiopathic arthritis - case study. Conference WALT; Lemesos, Cyprus; 2006. 181.
Korepanov VI. State of the art of laser therapy in Russia: a brief overview [Russian]. Laser Ther. 1997;9(1):41-42.
Skobelkin O. Achievements low level laser therapy in Russia [Russian]. Laser Ther. 1994;6(1):12.
Maiman ТН. Stimulated optical radiation in ruby. Nature. 1960;187:493.
Mester E, Ludani G, Selyei M, Szende B, Total GJ. The stimulating effect of low power laser rays on biological systems. Laser Rev. 1968;1:3-8.
Mester E, Ludany G, Sellyei M, Szende B, Gyenes G, Total GJ. Studies on the inhibiting and activating effects of laser beams [German]. Langenbecks Archiv fur Chirurgie. 1968;322:1022-7.
Mester E, Ludany G, Sellyei M, Szende B. On the biologic effect of laser rays [German]. Bull Soc Int Chir. 1968;27(1):68-73.
Rounds DE, Chamberlain EC, Okigaki I. Laser radiation of tissue cultures. Ann N Y Acad Sci. 1965;28(122):713-27.
Geusic JE, Marcos HM, Van Uitert LG. Laser oscillations in ND-doped yttrium aluminum, yttrium gallium and gadolinium garnets. Appl Phys Letters. 1964;4(10):182.
Abergel RP, Meeker CA, Dwyer RM, Lesavoy MA, Uitto J. Nonthermal effects of Nd:YAG laser on biological functions of human skin fibroblasts in culture. Lasers Surg Med. 1984;3(4):279-84.
Castro DJ, Abergel RP, Meeker CA, Dwyer RM, Lesavoy MA, Uitto J. Effect of the Nd:YAG laser on DNA synthesis and collagen production in human skin fibroblast cultures. Ann Plastic Surg. 1983;11(3):214-22.
Franken PA, Ward JF. Optical harmonics and nonlinear phenomena. Rev Mod Phys. 1963;35(1):23-39.
Rounds DE, Olson RS, Johnson FM. The laser as a potential tool for cell research. J Cell Biol. 1965;27 (1):191-197.
Patel CKN. Continuous-wave laser action on vibrational-rotational transitions of CO2. Phys Rev. 1964;136(5A):A1187-A1193.
Astafieva OG, Panchenkova GF, Gorbatenko EA. General interaction of laser irradiation with organs and tissues [Russian]. Saratov: Saratov University press; 1980:38-51.
Koshelev VN, Tarkhov GN, Astafieva OG, et al. Some problems of wound healing stimulation [Russian]. Materials of all-Union. conf. “The use of methods and means of laser technology in biology and medicine”. Kiev: Naukova dumka; 1981:37-40.
Javan A, Bennett WR Jr, Herriott DR. Population inversion and continuous optical maser oscillation in a gas discharge containing a He-Ne mixture. Phys Rev Letters. 1961;6(3):106-113.
Inyushin VM. On the question of biological activity of red radiation [Russian]. Alma Ata; 1965:22
Inyushina TF, Inyushin VM. About the action of laser light on erythropoiesis [Russian]. Nekotoryye voprosy teoreticheskoy i prikladnoy biologii. Alma-Ata; 1967:113- 5.
Silfvast WT. Efficient CW laser oscillation at 4416°A in Cd (II). Appl Phys Letters. 1968;13(5): 169-71.
Shchur VV, Morozova VA, Shapiro AM, et al. Mathematical analysis of biological effect of helium-cadmium optical quantum generator in experiment on animals [Russian]. Gigiyenicheskiye aspekty ispol’zovaniya lazernogo izlucheniya v narodnom khozyaystve. Moscow; 1982:120- 122.
Hall RN, Fenner GE, Kingsley JD, Soltys TJ, Carlson RO. Coherent light emission from GaAs junctions. Phys Rev Letters. 1962;9(9):366-8.
Niels Ryberg Finsen - Facts. Nobelprize website. Nobel Media AB; 2014. http://www.nobelprize.org/nobel_prizes/ medicine/laureates/1903/finsen-facts.html.
Finsen NR. Om Anvendelse i Medicinen af Koncentrerede Kemiske Lysstraaler. Copenhagen, Denmark: Gyldendalske Boghandels Forlag; 1896:5-52.
Finsen NR. Ueber die Anwendung von concentrirten chemischen Lichtstrahlen in der Medicin. Leipzig: FCW Vogel; 1899:52.
Finsen NR. Light therapy [Russian]. St. Petersburg; 1901:39.
Bang S. Om fordelingen af bakteriedrøbende straaler i kulbuelysets spektrum. Meddeleleser fra Finsens Medicinske Lysinstitut.1904;IX:123-135.
Bie V. Om Lysets virkning paa Bakterier, Eksperimentielle Undersøgelser. Copenhagen, Denmark: Gyldendalske Boghandels Forlag; 1903:43-178.
Bie V. Use of light in medicine[Article in Russian]. St.Petersburg: “Prakticheskaya meditsina” (V.S. Ettinger); 1906.
Rieder H. Light Therapy [Russian]. St. Petesburg: magazine edition “Prakticheskaya meditsina” (V.S. Ettinger); 1902.
Rieder H. Luft- und Lichttherapie. 1911.
Moskvin SV. Laser therapy like a modern stage of heliotherapy (historical aspect) [Russian]. Lasernaya meditsina. 1997;1(1):44-49.
Moskvin SV. Laser therapy in dermatology: Vitiligo[Russian]. Tekhnika, Moscow; 2003.
Moskvin SV. Systemic analysis of the effectiveness of management of biological systems by low-energy laser irradiation [Thesis]. Tula; 2008.
Moskvin SV. The effectiveness of laser therapy. Series “Effective laser therapy” V. 2. [Russian]. Мoscow-Tver: Triada; 2014.
Moskvin SV, Nasedkin AN, Kochetkov VA, et al. Therapy by Matrix Pulsed Lasers of Red Spectrum[Russian]. Tver: Triada; 2007.
Al-Watban FAH, Zhang XY. Comparison of the effects of laser therapy on wound healing using different laser wavelengths. Laser Ther. 1996;8(2):127-135.
Al-Watban FAH, Zhang XY. Comparison of wound healing process using argon and krypton lasers. J Clin Laser Med Surg. 1997;15(5):209-215.
Karu T. Photobiological fundamentals of low power laser therapy. IEEE Journal of Quantum Electronics. 1987;23(10):1703-1717.
Karu TI, Kalendo GS, Letokhov VS, Lobko VV. Biostimulation of HeLa cells by low intensity visible light. IL Nuovo Cimento D. 1982;1D(6):828-840.
Karu TI, Kalendo GS, Letokhov VS, Lobko VV. Biostimulation of HeLa cells by low intensity visible light. II. Stimulation of DNA and RNA synthesis in a wide spectral range. IL Nuovo Cimento. 1984;3D(2):309-318.
Karu TI, Kalendo GS, Letokhov VS, Lobko VV. Biostimulation of HeLa cells by low intensity visible light. III. Stimulation of nucleic acid synthesis in plateau phase cells. IL Nuovo Cimento. 1984;3D(6):319-325.
Karu T. Activation of metabolism of nonphotosynthesizing microorganisms with monochromatic visible (laser) light: A critical review. Lasers Life Sci. 1996;7(1):11-33.
Karu T. Ten lectures on basic science of laser phototherapy. Grängeberg, Sweden: Prima Books AB; 2007.
Karu TI. Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol. 2008;84(6):1091-1099.
Karu TI, Kolyakov SF. Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg. 2005;23(4):355-361.
Hamblin MR, Demidova TN. Mechanisms of low level light therapy. http://photobiology.info/Hamblin.html.
Smith KC. Laser and led photobiology. Laser Ther. 2010;19(2):72-78. doi:10.1089/pho.2005.23.78.
Hale GM, Querry MR. Optical constants of water in the 200 nm to 200 μm wavelength region. Appl Opt. 1973;12:555- 563.
Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signaling. Nature Rev Mol Cell Biol. 2000;1(1):11-21.
Huang YY, Chen ACH, Carroll JD, Hamblin MM. Biphasic dose response in low level light therapy. Dose Response. 2009;7(4):358-383.
Zharov VP, Karu T, Litvinov J, Yu O, Tiflova OA. Photobiological effect of semiconductor laser irradiation in the near IR-area. Kvantovaya Elektronika. 1987,14(11):2135-2136.
Karu T, Tiphlova O, Esenaliev R, et al. Two different mechanisms of low-intensity laser photobiological effect on Escherichia coli. J Photochem Photobiol B. 1994;24(2):155- 161.
Nussbaum EL, Lilge L, Mazzulli T. Effects of 630-, 660-, 810-, and 905-nm laser irradiation delivering radiant exposure of 1-50 J/cm2 on three species of bacteria in vitro. J Clin Laser Med Surg. 2002;20(6):325-333.
Podshibyakin DV. Study of in vitro and in vivo morpho-physiological characteristics of Escherichia coli and Staphylococcus aureus under action of low-intensity irradiation in visible and radio range [Thesis] [Russian]. Saratov; 2010.
Walker JB, Swartzwelder HS, Bondy SC. Suppression of hippocampal epileptiform activity in vitro after laser exposure. Laser Ther. 2005;14(2):19-21.
Rigau J, Sun CH, Trelles MA, Berns MW. Effects of the 633-nm laser on the behavior and morphology of primary fibroblast culture. SPIE Proceedings. 1996;2630:38-42.
Lubart R, Friedmann H, Sinyakov M, et al. The effect of HeNe laser (633 nm) radiation on intracellular Cа2+ concentration in fibroblasts. Laser Ther. 1997;9(3):115-20.
Lubart R, Friedmann H, Sinyakov M, et al. The effect of HeNe laser (633 nm) radiation on intracellular Сa2+ concentration in fibroblasts. Laser Ther. 2005;14(2):35-40.
Yu HS, Chang KL, Yu CL, Chen JW, Chen GS. Low-energy helium-neon laser irradiation stimulates interleukin-1 alpha and interleukin-8 release from cultured human keratinocytes. J Invest Dermatol. 1996;107(4):593-596.
Hemvani N, Chitnis DS, Bhagwanani NS. Effect of helium-neon laser on cultured human macrophages. Laser Ther. 1998;10(4):159-164.
Ribeiro MS, da Costa DR, Prates RA, et al. Study of the light parameters on cell cultures following low intensity red laser therapy. Conference WALT; Bergen, Norway; 2010:38.
Løvschall H, Scharff O, Foder B, Arenholdt-Bindslev D. Effect of low level laser irradiation on cytosolic Cа2+ in human neutrophils in vitro. Laser Ther. 1994,6(1):31.
Loevschal H, Arenholt-Bindslev D. Effect of low level diode laser irradiation of human oral mucosa fibroblasts in vitro. Lasers Surg Med. 1994;14(4):347-54.
Ferreira MPP, Ferrari RAM, Gravalos ED, Martins MD, Bussadori SK, Gonzalez DAB. Effect of low-energy gallium-aluminum-arsenide and aluminium gallium indium phosphide laser irradiation on the viability of C2C12 myoblasts in a muscle injury model. Photomed Laser Surg. 2009,27(6):901-906. doi: 10.1089/pho.2008.2427.
Yang HQ, Wang YH, Chen JX, et al. Efficacy of proliferation of HeLa cells under three different low-intensity red lasers irradiation. Int J Photoenergy. 2012;2012:290796:5. doi:10.1155/2012/290796.
Alexandratou E, Yova D, Handris P, Kletsas D, Loukas S. Human fibroblast alterations induced by low power laser irradiation at the single cell level using confocal microscopy. Photochem Photobiol Sci. 2002;1(8):547-552.
Breibart H, Levinshal, Cohen N, Friedmann H, Lubart R. Changes in calcium transport in mammalian sperm mitochondria and plasma membrane irradiated at 633 nm (HeNe laser). J Photochem Photobiol B. 1996;34(2-3):117- 121.
Colver GB, Priestley GC. Failure of a helium-neon laser to affect components of wound healing in vitro. Br J Dermatol. 1989;121(2):179-186.
Friedmann H, Lubart R. Photobiostimulation by light-induced cytosolic calcium oscillations. Laser Ther. 1996;8(2):137-141.
Lubart R, Friedman H, Sinuakov M, Cohen N, Breibart H. Change in calcium transport in mammalian sperm mitochondria and plasma membranes caused by 780-nm irradiation. Lasers Surg Med. 1997;21(5):493-499.
Smith KC. Light and life: photobiological basis of the therapeutic use of radiation from lasers. In: Selected papers from the October 1990 ILTA Congress “Progress in laser therapy”. Oshiro T, Calderhead RG, eds. Chichester, England: John Wiley & Sons; 1990:11-18.
Webb C, Dyson M, Lewis WH. Stimulatory effect of 660- nm low level laser energy on hypertrophic scarderived fibroblasts: possible mechanisms for increase in cell counts. Laser Surg Med. 1998,22(5):294-301.
Breitbart H, Wehbie R, Lardy H. Regulation of calcium transport in bovine spermatozoa. Biochim Biophys Acta. 1990;1027(1):72-78.
Singh JP, Babcock DF, Lardy HA. Motility activation, respiratory stimulation, and alteration of Ca2+ transport in bovine sperm treated with amine local anesthetics and calcium transport antagonists. Arch Biochem Biophys. 1983;221(1):291-303.
Tombes RM, Borisy GG. Intracellular free calcium and mitosis in mammalian cells: anaphase onset is calcium modulated, but is not triggered by a brief transient. J Cell Biol. 1989;109(2):627-636.
Mester E, Mester AF, Mester A. The biomedical effects of laser application. Lasers Surgd Med. 1985;5(1):31-39.
Geinitz AV, Moskvin SV. New technologies of intravenous laser irradiation of blood: “ILIB+ULIB” and “ILIB-405” [Russian]. Tver: Triada; 2010.
Moskvin SV, Minenkov AA, Konchugova TV. Mechanisms of action of percutaneous laser phoresis with hyaluronic acid, justification of optimal procedure parameters [Russian]. Plasticheskaya khirurgiya i kosmetologiya. 2011;3:519-24
Tupikin GV. Use of low-energy laser irradiation (argon with λ=488 nm and helium-neon with λ=632 nm) in treatment of patients with rheumatoid arthritis [Thesis] [Russian]. Moscow; 1984.
- Abstract Viewed: 2736 times
- PDF Downloaded: 1099 times