Shahid Beheshti University of Medical Sciences
  • Register
  • Login

Journal of Lasers in Medical Sciences

  • Issues
    • Current Issue
    • Archives
  • Journal Info
    • About the Journal
    • Editorial Team
    • Indexing/Abstracting
    • Contact Us
  • Author Guideline
    • Submission Guide
    • Author Statement Form
    • Peer Review Process
    • Publication Fee
  • Ethics & Policies
    • Ethical Requirements
    • Authorship Rules
    • Withdrawal Regulations
    • Retraction Considerations
    • Privacy Statement
  • Reviewer Guideline
  • New Submission
Advanced Search
  1. Home
  2. Archives
  3. Vol. 7 No. 3 (2016): Summer
  4. Original Article

Vol. 7 No. 3 (2016)

July 2016

Algorithm for Analyzing Thermal Images of Laser Irradiated Human Skin

  • Johnny Toumi
  • Fawaz Saiof
  • Wesam Bachir

Journal of Lasers in Medical Sciences, Vol. 7 No. 3 (2016), 17 July 2016 , Page 163-166
Published: 2016-07-17

  • View Article
  • Download
  • Cite
  • References
  • Statastics
  • Share

Abstract

Introduction: Tracking temporal changes of temperature during laser skin treatment plays an important role in improving the process of laser skin treatment itself. There are a number of methods to analyze temperature’s temporal dependency during laser skin treatment; some of those methods depend on imaging the skin with thermal cameras. However, the use of thermal cameras exhibits specific problems, including the ability to track laser-skin interaction spot. This paper is dedicated to solve that problem using digital image processing program coded with Matlab.

Methods: The measurements were taken for 15 native Syrian subjects of different sex, age and skin tones, the treated ailment was port wine stain. The clinical work (laser exposure) was performed in Damascus University, hospital of dermatology. The treatment was observed by thermal camera and analyzed using the proposed Matlab coded tracking system.

Results: For all the subjects, the treatment laser spot was tracked and the curves of skin temperature change with time where calculated by the use of the proposed algorithm, then the active time was calculated for each subject. The algorithm proved practical and robust.

Conclusion: The proposed algorithm proved to be efficient and can be used to support future researchers with capability to measure the temperature with high frame rate

Keywords:
  • Laser
  • Skin treatment
  • Digital image processing
  • Thermal imaging
  • Human skin
  • PDF

How to Cite

Toumi, J., Saiof, F., & Bachir, W. (2016). Algorithm for Analyzing Thermal Images of Laser Irradiated Human Skin. Journal of Lasers in Medical Sciences, 7(3), 163–166. Retrieved from https://journals.sbmu.ac.ir/jlms/article/view/8241
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

References

Vo-Dinh T. Biomedical Photonics Handbook. CRC Press; 2002.

Raulin C, Karsai S. Laser and IPL technology in Dermatology and Aesthetic Medicine. Springer; 2011. doi: 10.1007/978-3-642-03438-1_25.

Saccomandi P, Schena E, Silvestri S. Techniques for temperature monitoring during laser-induced thermotherapy: an overview. Int J Hyperthermia. 2013;29(7):609-619. doi:10.3109/02656736.2013.832411.

Li C, Li S, Huang Z, Xu W. Skin thermal effect by fe simulation and experiment of laser ultrasonic. Appl Mech Mater. 2010;24-25:281-286. doi:10.4028/www.scientific. net/amm.24-25.281.

Toumi J, Tarabichi, Wabbi, Assaad I. Measurement of skin temperature during dye laser treatment. J New Technol Mater. 2012;2(2): 22-24.

Verkruysse W, Jia W, Franco W, Milner TE, Nelson JS. Infrared measurement of human skin temperature to predict the individual maximum safe radiant exposure (IMSRE). Lasers Surg Med. 2007;39(10):757-766. doi:10.1002/lsm.20581.

Tunnell JW, Wang LV, Anvari B. Optimum pulse duration and radiant exposure for vascular laser therapy of dark port-wine skin: a theoretical study. Appl Opt. 2003;42(7): 1367-1378. doi:10.1364/ao.42.001367.

Noh S, Koh WS, Lim HW, et al. Tool to visualize and evaluate operator proficiency in laser hair-removal treatments. Biomed Eng Online. 2014;13:40. doi:10.1186/1475- 925X-13-40.

Steketee J. Spectral emissivity of skin and pericardium. Phys Med Biol. 1973;18(5):686-694. doi:10.1088/0031- 9155/18/5/307.

FitzpatrickTB. Soleil et peau [Sun and skin]. J Méd Esth. 1975;2:33-34.

Leandri M, Saturno M, Spadavecchia L, Iannetti G, Cruccu G, Truini A. Measurement of skin temperature after in-frared laser Stimulation. Neurophysiol Clin. 2006;36:207- 218.

Altshuler G, O’Shea L, Lazanicka O. Dermatological Treatment with Visualization. United States Patent. 7,220,254 B2, 22 May 2007.

  • Abstract Viewed: 509 times
  • PDF Downloaded: 382 times

Download Statastics

  • Linkedin
  • Twitter
  • Facebook
  • Google Plus
  • Telegram

Make a Submission

Make a Submission

Information

  • For Readers
  • For Authors
  • For Librarians

Developed By

Open Journal Systems
  • Home
  • Archives
  • Submissions
  • About the Journal
  • Editorial Team
  • Contact

Iranian Medical Laser Association 

                                        

 

This journal is distributed under the terms of CC BY-NC 3.0.
Design and publishing by SBMU journals. All credits and honors to PKP for their OJS. 

Powered by OJSPlus