Treatment Modelling of a 3D Tumour in Brain by Laser-Induced Interstitial Thermotherapy Laser treatment modelling of a real tumour
Journal of Lasers in Medical Sciences,
Vol. 14 (2023),
29 January 2023
,
Page e26
Abstract
Introduction: There are some ways to examine heat transfer in tumour tissue, which is an important issue in bioengineering. One of these ways uses the bioheat equation, proposed by Pennes, in a continuous medium. Another one uses a porous medium to model heat transfer in living tissues. The objective of this paper was to study an approach to modelling the temperature distribution and tumour ablation in brain tissue and compare results to Pennes’ approach.
Methods: This approach presents and uses a porous medium as the tissue instead of a continuous medium. In addition, the two approaches (simulation in continuous and porous medium) are compared in terms of temperature simulation and amount of cell ablation. The density, heat conduction factor, and blood perfusion rate are considered functions of temperature.
Results: In these approaches, after an 85-second treatment, the temperature increases to about 90°C. The temperature increase of the porous medium is relatively the same as that of the continuous medium and for this reason, the amount of cancerous cells that are ablated in a porous medium is approximately the same as that in a continuous medium. The volume of cell ablation is about 6500 mm3 for the two ideas. In addition, the degree of damage, computed from the Arrhenius integral method, and the ablated volume of the tumour endorse equality at the end of treatment. According to the results, similar to the continuous approach, the porous approach predicts the temperature and amount of volume of damaged cells.
Conclusion: Therefore, it is possible to use the porous approach instead of the Pennes approach for tumour treatment.
How to Cite
References
Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol. 1948;1(2):93-122. doi: 10.1152/jappl.1948.1.2.93.
Wissler EH. Pennes’ 1948 paper revisited. J Appl Physiol (1985). 1998;85(1):35-41. doi: 10.1152/jappl.1998.85.1.35.
Bhowmik A, Singh R, Repaka R, Mishra SC. Conventional and newly developed bioheat transport models in vascularized tissues: a review. J Therm Biol. 2013;38(3):107-25. doi: 10.1016/j.jtherbio.2012.12.003.
Marqa MF, Colin P, Nevoux P, Mordon SR, Betrouni N. Focal laser ablation of prostate cancer: numerical simulation of temperature and damage distribution. Biomed Eng Online. 2011;10:45. doi: 10.1186/1475925x-10-45.
Fuentes D, Walker C, Elliott A, Shetty A, Hazle JD, Stafford RJ. Magnetic resonance temperature imaging validation of a bioheat transfer model for laser-induced thermal therapy. Int J Hyperthermia. 2011;27(5):453-64. doi: 10.3109/02656736.2011.557028.
Olsrud J, Wirestam R, Persson BR, Tranberg KG. Simplified treatment planning for interstitial laser thermotherapy by disregarding light transport: a numerical study. Lasers Surg Med. 1999;25(4):304-14. doi: 10.1002/(sici)1096- 9101(1999)25:4<304::aid-lsm5>3.0.co;2-u.
Wulff W. Discussion paper: alternatives to the bio-heat transfer equation. Ann N Y Acad Sci. 1980;335:151-4. doi:10.1111/j.1749-6632.1980.tb50743.x.
Klinger HG. Heat transfer in perfused biological tissue. I. General theory. Bull Math Biol. 1974;36(4):403-15. doi: 10.1007/bf02464617.
Keller KH, Seiler L Jr. An analysis of peripheral heat transfer in man. J Appl Physiol. 1971;30(5):779-86. doi: 10.1152/ jappl.1971.30.5.779.
Weinbaum S, Jiji LM, Lemons DE. Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer--part I: anatomical foundation and model conceptualization. J Biomech Eng. 1984;106(4):321-30. doi:10.1115/1.3138501.
Jiji LM, Weinbaum S, Lemons DE. Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer--part II: model formulation and solution. J Biomech Eng. 1984;106(4):331-41. doi: 10.1115/1.3138502.
Vadász P. Emerging Topics in Heat and Mass Transfer in Porous Media. Vol 22. Netherlands: Springer; 2008.
Ehlers W, Wagner A. Multi-component modeling of human brain tissue: a contribution to the constitutive and computational description of deformation, flow and diffusion processes with application to the invasive drug delivery problem. Comput Methods Biomech Biomed Engin. 2015;18(8):861-79. doi: 10.1080/10255842.2013.853754.
Fink D, Wagner A, Ehlers W. Application-driven model reduction for the simulation of therapeutic infusion processes in multi-component brain tissue. J Comput Sci. 2018;24:101-15. doi: 10.1016/j.jocs.2017.10.002. 15. Amini S, Ahmadikia H. New approach of controlling the
area affected in brain tumor treatment by LITT. Comput Methods Biomech Biomed Engin. 2021;24(11):1221-7. doi: 10.1080/10255842.2020.1870966.
Chen C, Lee I, Tatsui C, Elder T, Sloan AE. Laser interstitial thermotherapy (LITT) for the treatment of tumors of the brain and spine: a brief review. J Neurooncol. 2021;151(3):429-42. doi: 10.1007/s11060-020-03652-z.
Riviere-Cazaux C, Bhandarkar AR, Rahman M, Zheng CR, Bauman MMJ, Naylor RM, et al. Outcomes and principles of patient selection for laser interstitial thermal therapy for metastatic brain tumor management: a multisite institutional case series. World Neurosurg. 2022;165:e520-e31. doi: 10.1016/j.wneu.2022.06.095.
Melnick K, Shin D, Dastmalchi F, Kabeer Z, Rahman M, Tran D, et al. Role of laser interstitial thermal therapy in the management of primary and metastatic brain tumors. Curr Treat Options Oncol. 2021;22(12):108. doi: 10.1007/ s11864-021-00912-6.
Rogers CM, Jones PS, Weinberg JS. Intraoperative MRI for brain tumors. J Neurooncol. 2021;151(3):479-90. doi: 10.1007/s11060-020-03667-6.
Ataie-Fashtami L, Shirkavand A, Sarkar S, Alinaghizadeh M, Hejazi M, Fateh M, et al. Simulation of heat distribution and thermal damage patterns of diode hair-removal lasers: an applicable method for optimizing treatment parameters. Photomed Laser Surg. 2011;29(7):509-15. doi: 10.1089/ pho.2010.2895.
Shirkavand A, Ataie-Fashtami L, Sarkar S, Alinaghizadeh MR, Fateh M, Zand N, et al. Thermal damage patterns of diode hair-removal lasers according to various skin types and hair densities and colors: a simulation study. Photomed Laser Surg. 2012;30(7):374-80. doi: 10.1089/pho.2011.3152.
Swami G. Numerical Modeling of Heat Distribution During Laser-Tissue Interaction [dissertation]. Rourkela: National Institute of Technology; 2012.
Shirkavand A, Sarkar S, Hejazi M, Ataie-Fashtami L, Alinaghizadeh MR. A new Monte Carlo code for absorption simulation of laser-skin tissue interaction. Chin Opt Lett. 2007;5(4):238-40.
Niemz MH. Laser-Tissue Interactions: Fundamentals and Applications. 3rd ed. Springer; 2007.
Arrhenius S. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z Phys Chem (N F). 1889;4(1):226-48. doi: 10.1515/zpch-1889-0416.
Cooper TE, Trezek GJ. Correlation of thermal properties of some human tissue with water content. Aerosp Med. 1971;42(1):24-7.
Taddeucci A, Martelli F, Barilli M, Ferrari M, Zaccanti G. Optical properties of brain tissue. J Biomed Opt. 1996;1(1):117-23. doi: 10.1117/12.227816.
Roggan A, Ritz JP, Knappe V, Germer CT, Isbert C, Schädel D, et al. Radiation planning for thermal laser treatment. Med Laser Appl. 2001;16(2):65-72. doi: 10.1078/1615-1615-00012.
Schwarzmaier HJ, Yaroslavsky AN, Yaroslavsky IV, Goldbach T, Kahn T, Ulrich F, et al. Optical properties of native and coagulated human brain structures. In: Preceding SPIE 2970, Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VII. San Jose, CA: SPIE; 1997. p. 492-9. doi: 10.1117/12.275082.
Akdogan I, Kiroglu Y, Onur S, Karabuluti N. The volume fraction of brain ventricles to total brain volume: a computed tomography stereological study. Folia Morphol (Warsz). 2010;69(4):193-200.
Schwarzmaier HJ, Yaroslavsky IV, Yaroslavsky AN, Fiedler V, Ulrich F, Kahn T. Treatment planning for MRI-guided laser-induced interstitial thermotherapy of brain tumors--the role of blood perfusion. J Magn Reson Imaging. 1998;8(1):121-7. doi: 10.1002/jmri.1880080124.
Nour M, Oukaira A, Bougataya M, Lakhssassi A. Thermal damage modeling analysis and validation during treatment of tissue tumors. Int J Pharma Med Biol Sci. 2017;6(4):98-104. doi: 10.18178/ijpmbs.6.4.98-104.
- Abstract Viewed: 213 times
- PDF Downloaded: 386 times