The Effect of Time-Dependence of 10 Hz Electromagnetic Field on Spatial Learning and Memory in Rats A 10 Hz Electromagnetic Field Improves Spatial Memory
Journal of Lasers in Medical Sciences,
Vol. 13 (2022),
10 January 2022
,
Page e64
Abstract
Introduction: In everyday life, electrical devices are the primary sources of extremely low-frequency electromagnetic fields (ELF-EMF), and the human body may be a great conductor of these fields. We chose alpha band power, especially at 10 Hz frequency, due to its prior beneficial role in memory. The purpose was to clarify whether there is a relationship between ELF-EMF exposure and cognitive deficits in rats, clinical signs, behavioral analysis, and the impact of ELF-EMF during different times of exposure on neuroplasticity via the expression of BDNF.
Methods: Forty adult male rats were selected randomly. The rats were exposed to ELF-EMF (10 Hz, 4 mT) for 7 days and 30 days, one hour daily. The expression of BDNF proteins in the hippocampus was evaluated after sacrificing animals to assess learning and memory function. The body weight of rats in the long-term exposed group differed significantly (P<0.05). The level of BDNF mRNA in the hippocampus was found by the RT-PCR method.
Results: Our findings indicate that exposure to ELF-EMF affects spatial learning and memory and can improve memory, especially with long-term exposure. In addition, we discovered a significant difference in the long-term exposed group (P<0.05), where radiation for 30 days resulted in a substantial rise in BDNF levels.
Conclusion: After prolonged exposure, male rats spent more time and traveled a greater percentage of their distance in the target quadrant, demonstrating that long-term exposure improves spatial memory and that 10 Hz might be safe.
- ELF-EMF; Spatial memory; Morris water maze test; Learning and memory
How to Cite
References
Bonnefond, M., & Jensen, O. (2012). Alpha oscillations serve to protect working memory maintenance against anticipated distracters. Curr Biol, 22(20), 1969-1974. doi:10.1016/j.cub.2012.08.029
Bromley-Brits, K., Deng, Y., & Song, W. (2011). Morris water maze test for learning and memory deficits in Alzheimer's disease model mice. J Vis Exp(53). doi:10.3791/2920
Cichoń, N., Bijak, M., Czarny, P., Miller, E., Synowiec, E., Sliwinski, T., & Saluk-Bijak, J. (2018). Increase in blood levels of growth factors involved in the neuroplasticity process by using an extremely low frequency electromagnetic field in post-stroke patients. Frontiers in Aging Neuroscience, 10, 294.
Cirulli, F., Berry, A., Chiarotti, F., & Alleva, E. (2004). Intrahippocampal administration of BDNF in adult rats affects short-term behavioral plasticity in the Morris water maze and performance in the elevated plus-maze. Hippocampus, 14(7), 802-807. doi:10.1002/hipo.10220
Duan, Y., Wang, Z., Zhang, H., He, Y., Fan, R., Cheng, Y., . . . Sun, X. (2014). Extremely low frequency electromagnetic field exposure causes cognitive impairment associated with alteration of the glutamate level, MAPK pathway activation and decreased CREB phosphorylation in mice hippocampus: reversal by procyanidins extracted from the lotus seedpod. Food Funct, 5(9), 2289-2297. doi:10.1039/c4fo00250d
Etemad, A., Sheikhzadeh, F., & Asl, N. A. (2015). Evaluation of brain-derived neurotrophic factor in diabetic rats. Neurol Res, 37(3), 217-222. doi:10.1179/1743132814Y.0000000428
Gao, Q., Leung, A., Yang, Y. H., Lau, B. W., Wang, Q., Liao, L. Y., . . . He, C. Q. (2021). Extremely low frequency electromagnetic fields promote cognitive function and hippocampal neurogenesis of rats with cerebral ischemia. Neural Regen Res, 16(7), 1252-1257. doi:10.4103/1673-5374.301020
Garcia, A. M., Sisternas, A., & Hoyos, S. P. (2008). Occupational exposure to extremely low frequency electric and magnetic fields and Alzheimer disease: a meta-analysis. Int J Epidemiol, 37(2), 329-340. doi:10.1093/ije/dym295
Greenberg, M. E., Xu, B., Lu, B., & Hempstead, B. L. (2009). New insights in the biology of BDNF synthesis and release: implications in CNS function. Journal of Neuroscience, 29(41), 12764-12767.
Hanslmayr, S., Spitzer, B., & Bauml, K. H. (2009). Brain oscillations dissociate between semantic and nonsemantic encoding of episodic memories. Cereb Cortex, 19(7), 1631-1640. doi:10.1093/cercor/bhn197
HE, L.-h., SHI, H.-m., LIU, T.-t., XU, Y.-c., YE, K.-p., & WANG, S. (2011). Effects of extremely low frequency magnetic field on anxiety level and spatial memory of adult rats. Chinese Medical Journal, 124(20), 3362-3366. doi:10.3760/cma.j.issn.0366-6999.2011.20.028
Hellweg, R., Lohmann, P., Huber, R., Kuhl, A., & Riepe, M. W. (2006). Spatial navigation in complex and radial mazes in APP23 animals and neurotrophin signaling as a biological marker of early impairment. Learn Mem, 13(1), 63-71. doi:10.1101/lm.2606
Karimi, S. A., Salehi, I., Shykhi, T., Zare, S., & Komaki, A. (2019). Effects of exposure to extremely low-frequency electromagnetic fields on spatial and passive avoidance learning and memory, anxiety-like behavior and oxidative stress in male rats. Behavioural brain research, 359, 630-638.
Kazemi, M., Sahraei, H., Aliyari, H., Tekieh, E., Saberi, M., Tavacoli, H., . . . Hajnasrollah, M. (2018). Effects of the Extremely Low Frequency Electromagnetic Fields on NMDA-Receptor Gene Expression and Visual Working Memory in Male Rhesus Macaques. Basic Clin Neurosci, 9(3), 167-176. doi:10.29252/NIRP.BCN.9.3.167
Khaki, A. A., Khaki, A., & Ahmadi, S. S. (2016). The effect of Non- ionizing electromagnetic field with a frequency of 50 Hz in Rat ovary: A transmission electron microscopy study. Int J Reprod Biomed, 14(2), 125-132.
Klimek, A., & Rogalska, J. (2021). Extremely Low-Frequency Magnetic Field as a Stress Factor-Really Detrimental?-Insight into Literature from the Last Decade. Brain Sci, 11(2). doi:10.3390/brainsci11020174
Klimesch, W. (2012). alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci, 16(12), 606-617. doi:10.1016/j.tics.2012.10.007
Klimesch, W., Doppelmayr, M., & Hanslmayr, S. (2006). Upper alpha ERD and absolute power: their meaning for memory performance. Prog Brain Res, 159, 151-165. doi:10.1016/S0079-6123(06)59010-7
Lai, J., Zhang, Y., Liu, X., Zhang, J., Ruan, G., Chaugai, S., . . . Wang, D. W. (2016). Effects of extremely low frequency electromagnetic fields (100muT) on behaviors in rats. NeuroToxicology, 52, 104-113. doi:10.1016/j.neuro.2015.11.010
Li, X. H., Liu, N. B., Zhang, M. H., Zhou, Y. L., Liao, J. W., Liu, X. Q., & Chen, H. W. (2007). Effects of chronic multiple stress on learning and memory and the expression of Fyn, BDNF, TrkB in the hippocampus of rats. Chin Med J (Engl), 120(8), 669-674.
Liu, T., Wang, S., He, L., & Ye, K. (2008). Chronic exposure to low-intensity magnetic field improves acquisition and maintenance of memory. Neuroreport, 19(5), 549-552. doi:10.1097/WNR.0b013e3282f8b1a0
Liu, X., Zuo, H., Wang, D., Peng, R., Song, T., Wang, S., . . . Zhao, L. (2015). Improvement of spatial memory disorder and hippocampal damage by exposure to electromagnetic fields in an Alzheimer's disease rat model. PLoS One, 10(5), e0126963. doi:10.1371/journal.pone.0126963
Mahdavi, S. M., Sahraei, H., Yaghmaei, P., & Tavakoli, H. (2014). Effects of electromagnetic radiation exposure on stress-related behaviors and stress hormones in male wistar rats. Biomol Ther (Seoul), 22(6), 570-576. doi:10.4062/biomolther.2014.054
Markov, M. S. (2015). Electromagnetic fields in biology and medicine: CRC Press.
Mizoguchi, Y., Yao, H., Imamura, Y., Hashimoto, M., & Monji, A. (2020). Lower brain-derived neurotrophic factor levels are associated with age-related memory impairment in community-dwelling older adults: the Sefuri study. Scientific Reports, 10(1), 16442. doi:10.1038/s41598-020-73576-1
Mizuno, M., Yamada, K., Olariu, A., Nawa, H., & Nabeshima, T. (2000). Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J Neurosci, 20(18), 7116-7121.
Moini, J., & Piran, P. (2020). Chapter 6 - Cerebral cortex. In J. Moini & P. Piran (Eds.), Functional and Clinical Neuroanatomy (pp. 177-240): Academic Press.
Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods, 11(1), 47-60. doi:https://doi.org/10.1016/0165-0270(84)90007-4
Morris, R. G., Garrud, P., Rawlins, J. a., & O'Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681-683.
Nawa, H., Carnahan, J., & Gall, C. (1995). BDNF protein measured by a novel enzyme immunoassay in normal brain and after seizure: partial disagreement with mRNA levels. Eur J Neurosci, 7(7), 1527-1535. doi:10.1111/j.1460-9568.1995.tb01148.x
Olton, D. S., Becker, J. T., & Handelmann, G. E. (1979). Hippocampus, space, and memory. Behavioral and Brain sciences, 2(3), 313-322.
Organization, W. H. (2007). Extremely low frequency fields: World Health Organization.
Pelleymounter, M. A., Cullen, M. J., & Wellman, C. L. (1995). Characteristics of BDNF-induced weight loss. Exp Neurol, 131(2), 229-238. doi:10.1016/0014-4886(95)90045-4
Qiao, H.-J., Li, Z.-Z., Wang, L.-M., Sun, W., Yu, J.-C., & Wang, B. (2017). Association of lower serum Brain-derived neurotrophic factor levels with larger infarct volumes in acute ischemic stroke. Journal of neuroimmunology, 307, 69-73.
Rana, K. D., & Vaina, L. M. (2014). Functional roles of 10 Hz alpha-band power modulating engagement and disengagement of cortical networks in a complex visual motion task. PLoS One, 9(10), e107715. doi:10.1371/journal.pone.0107715
Redlarski, G., Lewczuk, B., Żak, A., Koncicki, A., Krawczuk, M., Piechocki, J., . . . Gradolewski, D. (2015). The Influence of Electromagnetic Pollution on Living Organisms: Historical Trends and Forecasting Changes. BioMed Research International, 2015, 234098. doi:10.1155/2015/234098
Reshetnikov, V. V., Kisaretova, P. E., Ershov, N. I., Shulyupova, A. S., Oshchepkov, D. Y., Klimova, N. V., . . . Bondar, N. P. (2020). Genes associated with cognitive performance in the Morris water maze: an RNA-seq study. Scientific Reports, 10(1), 22078. doi:10.1038/s41598-020-78997-6
Rezaei-Tavirani, M., Hasanzadeh, H., Seyyedi, S., Ghoujeghi, F., Semnani, V., & Zali, H. (2018). Proteomic Analysis of Extremely Low-Frequency ElectroMagnetic Field (ELF-EMF) With Different Intensities in Rats Hippocampus. Arch Neurosci, 5(1), e62954. doi:10.5812/archneurosci.62954
Szemerszky, R., Zelena, D., Barna, I., & Bárdos, G. (2010). Stress-related endocrinological and psychopathological effects of short- and long-term 50Hz electromagnetic field exposure in rats. Brain Research Bulletin, 81(1), 92-99. doi:https://doi.org/10.1016/j.brainresbull.2009.10.015
Wianda, E., & Ross, B. (2019). The roles of alpha oscillation in working memory retention. Brain Behav, 9(4), e01263. doi:10.1002/brb3.1263
Woods, R., Vallero, R. O., Golub, M. S., Suarez, J. K., Ta, T. A., Yasui, D. H., . . . LaSalle, J. M. (2012). Long-lived epigenetic interactions between perinatal PBDE exposure and Mecp2308 mutation. Hum Mol Genet, 21(11), 2399-2411. doi:10.1093/hmg/dds046
Yang, D., Kim, K. H., Phimister, A., Bachstetter, A. D., Ward, T. R., Stackman, R. W., . . . Lein, P. J. (2009). Developmental exposure to polychlorinated biphenyls interferes with experience-dependent dendritic plasticity and ryanodine receptor expression in weanling rats. Environ Health Perspect, 117(3), 426-435. doi:10.1289/ehp.11771
Yuan, Z., Zhou, H., Zhou, N., Dong, D., Chu, Y., Shen, J., . . . Zhu, K. (2019). Dynamic Evaluation Indices in Spatial Learning and Memory of Rat Vascular Dementia in the Morris Water Maze. Scientific Reports, 9(1), 7224. doi:10.1038/s41598-019-43738-x
Zhang, L., Fang, Y., Lian, Y., Chen, Y., Wu, T., Zheng, Y., . . . Xu, Y. (2015). Brain-derived neurotrophic factor ameliorates learning deficits in a rat model of Alzheimer's disease induced by abeta1-42. PLoS One, 10(4), e0122415. doi:10.1371/journal.pone.0122415
Zhang, Y., Liu, X., Zhang, J., & Li, N. (2015). Short-term effects of extremely low frequency electromagnetic fields exposure on Alzheimer's disease in rats. Int J Radiat Biol, 91(1), 28-34. doi:10.3109/09553002.2014.954058
Zhao, Y., Gu, J. H., Dai, C. L., Liu, Q., Iqbal, K., Liu, F., & Gong, C. X. (2014). Chronic cerebral hypoperfusion causes decrease of O-GlcNAcylation, hyperphosphorylation of tau and behavioral deficits in mice. Front Aging Neurosci, 6, 10. doi:10.3389/fnagi.2014.00010
- Abstract Viewed: 279 times
- PDF Downloaded: 220 times