Effects of 2.45 GHz Non-Ionizing Radiation on Anxiety-Like Behavior, Gene Expression, and Corticosterone Level in Male Rats Long-term Radiation Exposure Modifies Memory and Anxiety Behavior in Rats
Journal of Lasers in Medical Sciences,
Vol. 13 (2022),
10 January 2022
,
Page e56
Abstract
The effects of short-term and long-term exposures to 2.45 GHz radiofrequency electromagnetic radiation (RF-EMR) on anxiety-like behavior, corticosterone level, and gene expression were investigated. The animals have been classified into eight groups, sham groups and, exposed groups for short-term and long-term exposure to the same dose of RF-EMR for one hour daily. The Wi-Fi equipment in the sham control group was not turned on during the experiment. The goal of this study was to explore the effect of electromagnetic fields of 2.45 GHz on clinical signs such as bodyweight and anxiety-like behavior, including the elevated plus maze test and open-field test, and also on messenger RNA (mRNA) expression of Bax (Bcl2-associated x) and Bcl-2 (B-cell lymphoma 2) genes on the cognitive memory functions in an animal model of rats. Both genes were further confirmed by reverse transcriptase-polymerase chain reaction (RT-PCR). The semi-quantitative PCR method of electromagnetic fields in the 2.45 GHz range impacted the expression of Bax and Bcl-2 genes in the rat's memory. The present study exhibited that short-term radiation could decrease the percentage of entry into the open arm and the percentage of time spent, while there were no substantial impacts on the long-term radiation effect. Our data support the hypothesis that short-term exposure worked as a systemic stressor, raising plasma corticosterone and changing glucocorticoid receptor expression in the hippocampus. Additional research on this specific frequency and amount of radiation is required to discover strategies for protecting the nervous system from the detrimental effects of RF-EMR radiation.
- Non-ionizing electromagnetic radiation, gene expression, elevated plus maze, Bcl-2, Bax gene, corticosterone.
How to Cite
References
Akhtar, R. S., Ness, J. M., & Roth, K. A. (2004). Bcl-2 family regulation of neuronal development and neurodegeneration. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1644(2), 189-203. doi:https://doi.org/10.1016/j.bbamcr.2003.10.013
Alani, B., Maghsoudi, N., Khatibi, A., Noureddini, M., Asefifar, F., & Shams, J. (2013). Study of the variations in apoptotic factors in hippocampus of male rats with posttraumatic stress disorder. Adv Biomed Res, 2, 42. doi:10.4103/2277-9175.109757
Albrechet-Souza, L., Cristina de Carvalho, M., Rodrigues Franci, C., & Brandao, M. L. (2007). Increases in plasma corticosterone and stretched-attend postures in rats naive and previously exposed to the elevated plus-maze are sensitive to the anxiolytic-like effects of midazolam. Horm Behav, 52(2), 267-273. doi:10.1016/j.yhbeh.2007.05.002
Asl, J. F., Goudarzi, M., & Shoghi, H. (2020). The radio-protective effect of rosmarinic acid against mobile phone and Wi-Fi radiation-induced oxidative stress in the brains of rats. Pharmacol Rep, 72(4), 857-866. doi:10.1007/s43440-020-00063-9
Barnes, F. S., & Greenebaum, B. (2018). Biological and medical aspects of electromagnetic fields: CRC press.
Bektas, H., Dasdag, S., & Bektas, M. S. (2020). Comparison of effects of 2.4 GHz Wi-Fi and mobile phone exposure on human placenta and cord blood. Biotechnology & Biotechnological Equipment, 34(1), 154-162. doi:10.1080/13102818.2020.1725639
Campbell, K. J., & Tait, S. W. G. (2018). Targeting BCL-2 regulated apoptosis in cancer. Open Biol, 8(5). doi:10.1098/rsob.180002
Cassel, J. C., Cosquer, B., Galani, R., & Kuster, N. (2004). Whole-body exposure to 2.45 GHz electromagnetic fields does not alter radial-maze performance in rats. Behav Brain Res, 155(1), 37-43. doi:10.1016/j.bbr.2004.03.031
Cobb, B. L., Jauchem, J. R., & Adair, E. R. (2004). Radial arm maze performance of rats following repeated low level microwave radiation exposure. Bioelectromagnetics, 25(1), 49-57. doi:10.1002/bem.10148
Cosquer, B., Galani, R., Kuster, N., & Cassel, J. C. (2005). Whole-body exposure to 2.45 GHz electromagnetic fields does not alter anxiety responses in rats: a plus-maze study including test validation. Behav Brain Res, 156(1), 65-74. doi:10.1016/j.bbr.2004.05.007
Duan, D., Yang, X., Ya, T., & Chen, L. (2014). Hippocampal gene expression in a rat model of depression after electroacupuncture at the Baihui and Yintang acupoints. Neural Regen Res, 9(1), 76-83. doi:10.4103/1673-5374.125333
Dulawa, S. C., Grandy, D. K., Low, M. J., Paulus, M. P., & Geyer, M. A. (1999). Dopamine D4 receptor-knock-out mice exhibit reduced exploration of novel stimuli. Journal of Neuroscience, 19(21), 9550-9556.
Furay, A. R., Bruestle, A. E., & Herman, J. P. (2008). The role of the forebrain glucocorticoid receptor in acute and chronic stress. Endocrinology, 149(11), 5482-5490.
Gholami, D., Riazi, G., Fathi, R., Sharafi, M., & Shahverdi, A. (2019). Comparison of polymerization and structural behavior of microtubules in rat brain and sperm affected by the extremely low-frequency electromagnetic field. BMC Molecular and Cell Biology, 20(1), 41. doi:10.1186/s12860-019-0224-1
H Esmaili, M., Masoumi, H., Jadidi, M., Miladi-Gorji, H., & Nazari, H. (2017). The effects of acute mobile phone radiation on the anxiety level of male rats. Middle East Journal of Rehabilitation and Health, 4(2), e43478.
Handley, S. L., & Mithani, S. (1984). Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of 'fear'-motivated behaviour. Naunyn Schmiedebergs Arch Pharmacol, 327(1), 1-5. doi:10.1007/BF00504983
Jadidi, M., Miladi-Gorji, H., Mahdinezhad, M., & Torkmandi, H. (2014). Effects of mobile phone jammer on the anxiety level of male and female mice. Physiology and Pharmacology, 18(3), 354-363.
Karimi, S. A., Salehi, I., Shykhi, T., Zare, S., & Komaki, A. (2019). Effects of exposure to extremely low-frequency electromagnetic fields on spatial and passive avoidance learning and memory, anxiety-like behavior and oxidative stress in male rats. Behavioural brain research, 359, 630-638.
Kazemi, M., Sahraei, H., Aliyari, H., Tekieh, E., Saberi, M., Tavacoli, H., . . . Hajnasrollah, M. (2018). Effects of the Extremely Low Frequency Electromagnetic Fields on NMDA-Receptor Gene Expression and Visual Working Memory in Male Rhesus Macaques. Basic Clin Neurosci, 9(3), 167-176. doi:10.29252/NIRP.BCN.9.3.167
Krahe, T. E., Medina, A. E., Lantz, C. L., & Filgueiras, C. C. (2015). Hyperactivity and depression-like traits in Bax KO mice. Brain Res, 1625, 246-254. doi:10.1016/j.brainres.2015.09.002
Lee, S., Johnson, D., Dunbar, K., Dong, H., Ge, X., Kim, Y. C., . . . Wang, S. M. (2005). 2.45 GHz radiofrequency fields alter gene expression in cultured human cells. FEBS Letters, 579(21), 4829-4836. doi:https://doi.org/10.1016/j.febslet.2005.07.063
Lynn, D. A., & Brown, G. R. (2010). The ontogeny of anxiety-like behavior in rats from adolescence to adulthood. Dev Psychobiol, 52(8), 731-739. doi:10.1002/dev.20468
Magiera, A., & Solecka, J. (2020). Radiofrequency electromagnetic radiation from Wi-fi and its effects on human health, in particular children and adolescents. Review. Rocz Panstw Zakl Hig, 71(3), 251-259. doi:10.32394/rpzh.2020.0125
Mahdavi, S., Khodarahmi, P., & Roodbari, N. (2018). Effects of cadmium on Bcl-2/Bax expression ratio in rat cortex brain and hippocampus. Human & experimental toxicology, 37(3), 321-328.
Mashevich, M., Folkman, D., Kesar, A., Barbul, A., Korenstein, R., Jerby, E., & Avivi, L. (2003). Exposure of human peripheral blood lymphocytes to electromagnetic fields associated with cellular phones leads to chromosomal instability. Bioelectromagnetics, 24(2), 82-90. doi:10.1002/bem.10086
Mazor, A., Matar, M. A., Kaplan, Z., Kozlovsky, N., Zohar, J., & Cohen, H. (2009). Gender-related qualitative differences in baseline and post-stress anxiety responses are not reflected in the incidence of criterion-based PTSD-like behaviour patterns. The World Journal of Biological Psychiatry, 10(4-3), 856-869.
McHugh, S. B., Deacon, R. M., Rawlins, J. N., & Bannerman, D. M. (2004). Amygdala and ventral hippocampus contribute differentially to mechanisms of fear and anxiety. Behav Neurosci, 118(1), 63-78. doi:10.1037/0735-7044.118.1.63
Mendes-Gomes, J., Miguel, T. T., Amaral, V. C. S., & Nunes-de-Souza, R. L. (2011). Corticosterone does not change open elevated plus maze-induced antinociception in mice. Hormones and Behavior, 60(4), 408-413. doi:https://doi.org/10.1016/j.yhbeh.2011.07.004
Motawi, T. K., Darwish, H. A., Moustafa, Y. M., & Labib, M. M. (2014). Biochemical Modifications and Neuronal Damage in Brain of Young and Adult Rats After Long-Term Exposure to Mobile Phone Radiations. Cell Biochemistry and Biophysics, 70(2), 845-855. doi:10.1007/s12013-014-9990-8
Nahas, Z., Jiang, Y., Zeidan, Y. H., Bielawska, A., Szulc, Z., Devane, L., . . . Hannun, Y. A. (2009). Anti-ceramidase LCL385 acutely reduces BCL-2 expression in the hippocampus but is not associated with an increase of learned helplessness in rats. Behav Brain Res, 197(1), 41-44. doi:10.1016/j.bbr.2008.07.040
Obajuluwa, A. O., Akinyemi, A. J., Afolabi, O. B., Adekoya, K., Sanya, J. O., & Ishola, A. O. (2017). Exposure to radio-frequency electromagnetic waves alters acetylcholinesterase gene expression, exploratory and motor coordination-linked behaviour in male rats. Toxicol Rep, 4, 530-534. doi:10.1016/j.toxrep.2017.09.007
Oltval, Z. N., Milliman, C. L., & Korsmeyer, S. J. (1993). Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. cell, 74(4), 609-619.
Othman, H., Ammari, M., Sakly, M., & Abdelmelek, H. (2017). Effects of repeated restraint stress and WiFi signal exposure on behavior and oxidative stress in rats. Metab Brain Dis, 32(5), 1459-1469. doi:10.1007/s11011-017-0016-2
Pfaffl, M. W., Tichopad, A., Prgomet, C., & Neuvians, T. P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations. Biotechnol Lett, 26(6), 509-515. doi:10.1023/b:bile.0000019559.84305.47
Prut, L., & Belzung, C. (2003). The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol, 463(1-3), 3-33. doi:10.1016/s0014-2999(03)01272-x
Rafati, A., Erfanizadeh, M., Noorafshan, A., & Karbalay-Doust, S. (2015). Effect of benzene on the cerebellar structure and behavioral characteristics in rats. Asian Pacific Journal of Tropical Biomedicine, 5(7), 568-573. doi:https://doi.org/10.1016/j.apjtb.2015.05.002
Rao, R. M., & Sadananda, M. (2016a). Influence of State and/or Trait Anxieties of Wistar Rats in an Anxiety Paradigm. Ann Neurosci, 23(1), 44-50. doi:10.1159/000443555
Rao, R. M., & Sadananda, M. (2016b). Influence of State and/or Trait Anxieties of Wistar Rats in an Anxiety Paradigm. Annals of Neurosciences, 23(1), 44-50. doi:10.1159/000443555
Regalbuto, E., Anselmo, A., De Sanctis, S., Franchini, V., Lista, F., Benvenuto, M., . . . Sgura, A. (2020). Human Fibroblasts In Vitro Exposed to 2.45 GHz Continuous and Pulsed Wave Signals: Evaluation of Biological Effects with a Multimethodological Approach. Int J Mol Sci, 21(19). doi:10.3390/ijms21197069
Rodgers, R. J., Haller, J., Holmes, A., Halasz, J., Walton, T. J., & Brain, P. F. (1999). Corticosterone response to the plus-maze: High correlation with risk assessment in rats and mice. Physiology & Behavior, 68(1), 47-53. doi:https://doi.org/10.1016/S0031-9384(99)00140-7
Rondi-Reig, L., Lemaigre Dubreuil, Y., Martinou, J. C., Delhaye-Bouchaud, N., Caston, J., & Mariani, J. (1997). Fear decrease in transgenic mice overexpressing bcl-2 in neurons. Neuroreport, 8(11), 2429-2432. doi:10.1097/00001756-199707280-00004
Ruvolo, P. P., Deng, X., & May, W. S. (2001). Phosphorylation of Bcl2 and regulation of apoptosis. Leukemia, 15(4), 515-522. doi:10.1038/sj.leu.2402090
Sandrey, M. A., Vesper, D. N., Johnson, M. T., Nindl, G., Swez, J. A., Chamberlain, J., & Balcavage, W. X. (2002). Effect of short duration electromagnetic field exposures on rat mass. Bioelectromagnetics, 23(1), 2-6. doi:10.1002/bem.92
Schuermann, D., & Mevissen, M. (2021). Manmade Electromagnetic Fields and Oxidative Stress—Biological Effects and Consequences for Health. International journal of molecular sciences, 22(7), 3772.
Seo, N., Lee, S. H., Ju, K. W., Woo, J., Kim, B., Kim, S., . . . Lee, J. H. (2018). Low-frequency pulsed electromagnetic field pretreated bone marrow-derived mesenchymal stem cells promote the regeneration of crush-injured rat mental nerve. Neural Regen Res, 13(1), 145-153. doi:10.4103/1673-5374.224383
Sestakova, N., Puzserova, A., Kluknavsky, M., & Bernatova, I. (2014). Determination of motor activity and anxiety-related behaviour in rodents: methodological aspects and role of nitric oxide. Interdisciplinary Toxicology, 6(3), 126-135. doi:doi:10.2478/intox-2013-0020
Varghese, R., Majumdar, A., Kumar, G., & Shukla, A. (2018). Rats exposed to 2.45GHz of non-ionizing radiation exhibit behavioral changes with increased brain expression of apoptotic caspase 3. Pathophysiology, 25(1), 19-30. doi:10.1016/j.pathophys.2017.11.001
Veenit, V., Cordero, M. I., Tzanoulinou, S., & Sandi, C. (2013). Increased corticosterone in peripubertal rats leads to long-lasting alterations in social exploration and aggression. Front Behav Neurosci, 7, 26. doi:10.3389/fnbeh.2013.00026
Walf, A. A., & Frye, C. A. (2007). The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc, 2(2), 322-328. doi:10.1038/nprot.2007.44
Xiang, X., Huang, W., Haile, C. N., & Kosten, T. A. (2011). Hippocampal GluR1 associates with behavior in the elevated plus maze and shows sex differences. Behav Brain Res, 222(2), 326-331. doi:10.1016/j.bbr.2011.03.068
Xie, F., Xiao, P., Chen, D., Xu, L., & Zhang, B. (2012). miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant molecular biology, 80(1), 75-84.
Yang, X. S., He, G. L., Hao, Y. T., Xiao, Y., Chen, C. H., Zhang, G. B., & Yu, Z. P. (2012). Exposure to 2.45 GHz electromagnetic fields elicits an HSP-related stress response in rat hippocampus. Brain Res Bull, 88(4), 371-378. doi:10.1016/j.brainresbull.2012.04.002
Yazdanpanahi, M., Namazi, S., Shojaeifard, M., Nematollahii, S., & Pourahmad, S. (2020). Evaluating the Effect of Jammer Radiation on Learning and Memory in Male Rats. Journal of Biomedical Physics and Engineering.
Yu-Hong, Q., GuiRong, D., Jun, L., XiaoMing, S., LiHua, Z., DongQing, R., & Guo-Zhen, G. (2008). Study on behavior of female rat 3 months after electromagnetic pulse irradiation. Paper presented at the 2008 8th International Symposium on Antennas, Propagation and EM Theory.
- Abstract Viewed: 443 times
- PDF Downloaded: 260 times