Experimental Analysis of Vaginal Laxity in Rats Treated With a Combination of Er:YAG Fractional Lasers and AMSC-MP Experimental Analysis of Vaginal Laxity
Journal of Lasers in Medical Sciences,
Vol. 14 (2023),
29 January 2023
,
Page e2
Abstract
Introduction: Vaginal laxity, a symptom of pelvic floor dysfunction observed in women, has many negative biological and psychological impacts. Laser treatments and stem cell-based therapies are emerging therapeutic methods for treating this condition. This study aimed to determine changes in vaginal laxity in model rats using a combination therapy of erbium-doped yttrium aluminium garnet (Er:YAG) fractional lasers and topical treatment with amniotic membrane stem cell metabolite products (AMSC-MP).
Methods: The experimental animal population comprised 36 female white rats (Rattus norvegicus; 2-day-post-vaginal-delivery rats) allocated into the following four groups (n=9): K1, untreated two-day-post-vaginal-delivery rats; K2, two-day-post-vaginal-delivery rats treated with topical gel without AMSC-MP; P1, two-day-post-vaginal-delivery rats treated with Er: YAG fractional lasers and topical gel without AMSC-MP; P2, two-day-post-vaginal-delivery rats treated with Er: YAG fractional lasers and topical gel containing AMSC-MP. Immunohistochemical (IHC) examination was carried out for the expression and activity of heat shock protein 70 (HSP-70), collagen-1, tissue inhibitors of metalloproteinase 1 (TIMP-1), and matrix metalloproteinase 1 (MMP-1), as well as vaginal mucosal thickness.
Results: There was a significant difference (P<0.05) in the expression of HSP-70 among all groups except K2 and P1 (P>0.05); there was no significant difference in type I collagen and TIMP-1 expression between the groups (P>0.05); there was a significant difference (P<0.05) in MMP-1 activity, with the activity in the K2 group (5.79±0.83) being higher than that in the P1 group (4.44±1.82) and that in the K1 group (5.74±1.03) being higher than that in the P2 group (4.24±1.55). Also, there was a significant difference in the thickness of the vaginal mucosa in all groups except K2 and P1 (P>0.05).
Conclusion: Er:YAG fractional laser and AMSC-MP combination therapy improved vaginal laxity in model rats by increasing Hsp70 expression and vaginal mucosal thickness and decreasing MMP-1 activity.
- Vaginal laxity; Er:YAG fractional laser; AMSC-MP; Collagen; Reproductive health.
How to Cite
References
1. Dietz HP, Stankiewicz M, Atan IK, Ferreira CW, Socha M. Vaginal laxity: what does this symptom mean? Int Urogynecol J. 2018;29(5):723-8. doi: 10.1007/s00192-017-3426-0.
2. Campbell P, Krychman M, Gray T, Vickers H, MoneyTaylor J, Li W, et al. Self-reported vaginal laxity-prevalence, impact, and associated symptoms in women attending a urogynecology clinic. J Sex Med. 2018;15(11):1515-7. doi: 10.1016/j.jsxm.2018.08.015.
3. Karcher C, Sadick N. Vaginal rejuvenation using energybased devices. Int J Womens Dermatol. 2016;2(3):85-8. doi: 10.1016/j.ijwd.2016.05.003.
4. Dobbeleir JM, Landuyt KV, Monstrey SJ. Aesthetic surgery of the female genitalia. Semin Plast Surg. 2011;25(2):130-41. doi: 10.1055/s-0031-1281482.
5. Lee MS. Treatment of vaginal relaxation syndrome with an erbium:YAG laser using 90° and 360° scanning scopes: a pilot study & short-term results. Laser Ther. 2014;23(2):129- 38. doi: 10.5978/islsm.14-OR-11.
6. Gold M, Andriessen A, Bader A, Alinsod R, French ES, Guerette N, et al. Review and clinical experience exploring evidence, clinical efficacy, and safety regarding nonsurgical treatment of feminine rejuvenation. J Cosmet Dermatol. 2018;17(3):289-97. doi: 10.1111/jocd.12524.
7. Mcllwee BE, Alster TS. Laser Skin Resurfacing: Cosmetic and Medical Applications. Available from: https:// accessmedicine .mhmedical. com/ content. aspx?bookid=2570§ionid=210446721. Accessed December 8, 2022.
8. Alexiades-Armenakas MR, Dover JS, Arndt KA. The spectrum of laser skin resurfacing: nonablative, fractional, and ablative laser resurfacing. J Am Acad Dermatol. 2008;58(5):719-37; quiz 38-40. doi: 10.1016/j.jaad.2008.01.003.
9. Tadir Y, Gaspar A, Lev-Sagie A, Alexiades M, Alinsod R, Bader A, et al. Light and energy based therapeutics for genitourinary syndrome of menopause: consensus and controversies. Lasers Surg Med. 2017;49(2):137-59. doi: 10.1002/lsm.22637.
10. Freedman JR, Greene RM, Green JB. Histologic effects of resurfacing lasers. Facial Plast Surg. 2014;30(1):40-8. doi: 10.1055/s-0033-1363762.
11. Capon A, Mordon S. Can thermal lasers promote skin wound healing? Am J Clin Dermatol. 2003;4(1):1-12. doi: 10.2165/00128071-200304010-00001.
12. Farhadihosseinabadi B, Farahani M, Tayebi T, Jafari A, Biniazan F, Modaresifar K, et al. Amniotic membrane and its epithelial and mesenchymal stem cells as an appropriate source for skin tissue engineering and regenerative medicine. Artif Cells Nanomed Biotechnol. 2018;46(sup2):431-40. doi: 10.1080/21691401.2018.1458730.
13. Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, Yoo J, et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med. 2012;1(11):792-802. doi: 10.5966/sctm.2012-0088.
14. Sari DI, Erawati T, Miatmoko A, Prakoeswa CR, Soeratri W. Characterization and stability study of amniotic membrane stem cell metabolite product (AMSC-MP). Int J Pharm Res Health Sci. 2020;8(1):3126-30.
15. Islam R, Rahman MS, Asaduzzaman SM, Rahman MS. Properties and therapeutic potential of human amniotic membrane. Asian J Dermatol. 2015;7(1):1-12. doi: 10.3923/ ajd.2015.1.12.
16. Fedchenko N, Reifenrath J. Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue–a review. Diagn Pathol. 2014;9:221. doi: 10.1186/s13000-014-0221-9.
17. Wilmink GJ, Opalenik SR, Beckham JT, Abraham AA, Nanney LB, Mahadevan-Jansen A, et al. Molecular imaging-assisted optimization of hsp70 expression during laser-induced thermal preconditioning for wound repair enhancement. J Invest Dermatol. 2009;129(1):205-16. doi: 10.1038/ jid.2008.175.
18. Kwon TR, Kim JH, Seok J, Kim JM, Bak DH, Choi MJ, et al. Fractional CO2 laser treatment for vaginal laxity: a preclinical study. Lasers Surg Med. 2018;50(9):940-7. doi: 10.1002/ lsm.22940.
19. Daucher JA, Clark KA, Stolz DB, Meyn LA, Moalli PA. Adaptations of the rat vagina in pregnancy to accommodate delivery. Obstet Gynecol. 2007;109(1):128-35. doi: 10.1097/01.aog.0000246798.78839.62.
20. Gantsetseg D. Comparison of Non-Ablative and Ablative Fractional Laser Treatment in Postoperative Scars [dissertation]. Graduate School, Yonsei University; 2011.
21. Duscher D, Barrera J, Wong VW, Maan ZN, Whittam AJ, Januszyk M, et al. Stem cells in wound healing: the future of regenerative medicine? A mini-review. Gerontology. 2016;62(2):216-25. doi: 10.1159/000381877.
22. Dhital B, Gul-E-Noor F, Downing KT, Hirsch S, Boutis GS. Pregnancy-induced dynamical and structural changes of reproductive tract collagen. Biophys J. 2016;111(1):57-68. doi: 10.1016/j.bpj.2016.05.049.
23. Ariani N. The differences of matrix metalloproteinase 9 and tissue inhibitor matrix metalloproteinase 1 expression between nullipara and postpartum on vaginal wall of Rattus norvegicus. Sci Midwifery. 2021;9(2):243-6.
24. Gaspar A, Addamo G, Brandi H. Vaginal fractional CO2 laser: a minimally invasive option for vaginal rejuvenation. Am J Cosmet Surg. 2011;28(3):156-62. doi: 10.1177/074880681102800309.
25. Alperin M, Feola A, Duerr R, Moalli P, Abramowitch S. Pregnancy- and delivery-induced biomechanical changes in rat vagina persist postpartum. Int Urogynecol J. 2010;21(9):1169-74. doi: 10.1007/s00192-010-1149-6.
26. Mulder GD, Vande Berg JS. Cellular senescence and matrix metalloproteinase activity in chronic wounds. Relevance to debridement and new technologies. J Am Podiatr Med Assoc. 2002;92(1):34-7. doi: 10.7547/87507315-92-1-34.
- Abstract Viewed: 614 times
- PDF Downloaded: 592 times