Preclinical and Clinical Applications of Photobiomodulation Therapy in Sperm Motility: A Narrative Review Effect of Photobiomodulation Therapy on Sperm Motility
Journal of Lasers in Medical Sciences,
Vol. 13 (2022),
10 January 2022
,
Page e75
Abstract
About 50% of infertility problems are related to male factors and reduced sperm motility. The important factor that affects the structure and function of sperm is reactive oxygen species (ROS), and over-concentration of ROS reduces the quality and motility of sperm. Photobiomodulation therapy (PBMT) using red to near-infrared (NIR) light is useful in oxidative stress restoration. It plays a therapeutic role in disorders such as asthenospermia, oligospermia cases, and cryopreserved sperm. It also enhances the metabolic capacity of sperm and increases the low-level and nonharmful intracellular content of Ca2+, nitric oxide (NO), and ROS in the stressed cells. Likewise, it modulates survival intracellular pathways and maintains the motility, viability, DNA, and acrosome
integrity of sperm. This article reviews the state-of-the-art preclinical and clinical evidence regarding the efficacy of semen PBMT.
- Sperm motility; Reactive oxygen species; Photobiomodulation therapy; Cryopreservation; Asthenozoospermia
How to Cite
References
Moghbelinejad S, Mozdarani H, Ghoraeian P, Asadi R. Basic and clinical genetic studies on male infertility in Iran during 2000-2016: a review. Int J Reprod Biomed. 2018;16(3):131-48.
Ferlin A, Raicu F, Gatta V, Zuccarello D, Palka G, Foresta C. Male infertility: role of genetic background. Reprod Biomed Online. 2007;14(6):734-45. doi: 10.1016/s1472- 6483(10)60677-3.
Chemes HE, Rawe VY. The making of abnormal spermatozoa: cellular and molecular mechanisms underlying pathological spermiogenesis. Cell Tissue Res. 2010;341(3):349-57. doi: 10.1007/s00441-010-1007-3.
Silva JV, Cruz D, Gomes M, Correia BR, Freitas MJ, Sousa L, et al. Study on the short-term effects of increased alcohol and cigarette consumption in healthy young men’s seminal quality. Sci Rep. 2017;7:45457. doi: 10.1038/srep45457.
Ding J, Shang X, Zhang Z, Jing H, Shao J, Fei Q, et al. FDAapproved medications that impair human spermatogenesis. Oncotarget. 2017;8(6):10714-25. doi: 10.18632/ oncotarget.12956.
Kumar N, Singh AK. Trends of male factor infertility, an important cause of infertility: a review of literature. J Hum Reprod Sci. 2015;8(4):191-6. doi: 10.4103/0974- 1208.170370.
Poorhassan M, Navae F, Mahakizadeh S, Bazrafkan M, Nikmehr B, Abolhassani F, et al. Flaxseed can reduce hypoxia-induced damages in rat testes. Int J Fertil Steril. 2018;12(3):235-41. doi: 10.22074/ijfs.2018.5298.
Faraj K, Dave C, Bennett RC, Vakharia P. Male Infertility. eMedicine Specialities: Urology, 2016. https://emedicine. medscape.com/article/436829-overview. Accessed September 7, 2016.
Leaver RB. Male infertility: an overview of causes and treatment options. Br J Nurs. 2016;25(18):S35-S40. doi: 10.12968/bjon.2016.25.18.S35.
Saez F, Motta C, Boucher D, Grizard G. Antioxidant capacity of prostasomes in human semen. Mol Hum Reprod. 1998;4(7):667-72. doi: 10.1093/molehr/4.7.667.
Poor Hassan M, Abdollahifar MA, Aliaghaei A, Tabeie F, Vafaei-Nezhad S, Norouzian M, et al. Photobiomodulation therapy improved functional recovery and overexpression of interleukins-10 after contusion spinal cord injury in rats. J Chem Neuroanat. 2021;117:102010. doi: 10.1016/j. jchemneu.2021.102010.
Tsai SR, Hamblin MR. Biological effects and medical applications of infrared radiation. J Photochem Photobiol B. 2017;170:197-207. doi: 10.1016/j.jphotobiol.2017.04.014.
Hamblin MR. Mechanisms and applications of the antiinflammatory effects of photobiomodulation. AIMS Biophys. 2017;4(3):337-61. doi: 10.3934/biophy.2017.3.337.
Yu W, Naim JO, McGowan M, Ippolito K, Lanzafame RJ. Photomodulation of oxidative metabolism and electron chain enzymes in rat liver mitochondria. Photochem Photobiol. 1997;66(6):866-71. doi: 10.1111/j.1751-1097.1997. tb03239.x.
Mostafavinia A, Ahmadi H, Amini A, Roudafshani Z, Hamblin MR, Chien S, et al. The effect of photobiomodulation therapy on antioxidants and oxidative stress profiles of adipose derived mesenchymal stem cells in diabetic rats. Spectrochim Acta A Mol Biomol Spectrosc. 2021;262:120157. doi: 10.1016/j. saa.2021.120157.
Cardullo RA, Baltz JM. Metabolic regulation in mammalian sperm: mitochondrial volume determines sperm length and flagellar beat frequency. Cell Motil Cytoskeleton. 1991;19(3):180-8. doi: 10.1002/cm.970190306.
du Plessis SS, Agarwal A, Mohanty G, van der Linde M. Oxidative phosphorylation versus glycolysis: what fuel do spermatozoa use? Asian J Androl. 2015;17(2):230-5. doi: 10.4103/1008-682x.135123.
Bracke A, Peeters K, Punjabi U, Hoogewijs D, Dewilde S. A search for molecular mechanisms underlying male idiopathic infertility. Reprod Biomed Online. 2018;36(3):327-39. doi: 10.1016/j.rbmo.2017.12.005.
Birkner A, Tischbirek CH, Konnerth A. Improved deep twophoton calcium imaging in vivo. Cell Calcium. 2017;64:29- 35. doi: 10.1016/j.ceca.2016.12.005.
Shahrokhi SZ, Salehi P, Alyasin A, Taghiyar S, Deemeh MR. Asthenozoospermia: cellular and molecular contributing factors and treatment strategies. Andrologia. 2020;52(2):e13463. doi: 10.1111/and.13463.
Lestari SW, Larasati MD, Mansur IG, Margiana R. Sperm Na+,K+-ATPase and Ca2+-ATPase activities: a potential predictive parameter of sperm motility disorder in infertile men. Biomed Pharmacol J. 2018;11(1):411-6. doi: 10.13005/ bpj/1388.
Boczek T, Lisek M, Ferenc B, Kowalski A, Stepinski D, Wiktorska M, et al. Plasma membrane Ca2+-ATPase isoforms composition regulates cellular pH homeostasis in differentiating PC12 cells in a manner dependent on cytosolic Ca2+elevations. PLoS One. 2014;9(7):e102352. doi: 10.1371/journal.pone.0102352.
Frank SA, Hurst LD. Mitochondria and male disease. Nature. 1996;383(6597):224. doi: 10.1038/383224a0https://doi. org/10.1038/383224a0.
Cummins JM, Jequier AM, Kan R. Molecular biology of human male infertility: links with aging, mitochondrial genetics, and oxidative stress? Mol Reprod Dev. 1994;37(3):345-62. doi: 10.1002/mrd.1080370314.
Spiropoulos J, Turnbull DM, Chinnery PF. Can mitochondrial DNA mutations cause sperm dysfunction? Mol Hum Reprod. 2002;8(8):719-21. doi: 10.1093/molehr/8.8.719.
Ishikawa T. Axoneme structure from motile cilia. Cold Spring Harb Perspect Biol. 2017;9(1):a028076. doi: 10.1101/ cshperspect.a028076.
Amaroli A, Benedicenti A, Ferrando S, Parker S, Selting W, Gallus L, et al. Photobiomodulation by infrared diode laser: effects on intracellular calcium concentration and nitric oxide production of Paramecium. Photochem Photobiol. 2016;92(6):854-62. doi: 10.1111/php.12644.
Thompson A, Agarwal A, du Plessis SS. Physiological role of reactive oxygen species in sperm function: a review. In: Parekattil SJ, Agarwal A, eds. Antioxidants in Male Infertility: A Guide for Clinicians and Researchers. New York, USA: Springer Science and Business Media; 2013. p. 69-89.
Agarwal A, Deepinder F, Sharma RK, Ranga G, Li J. Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study. Fertil Steril. 2008;89(1):124-8. doi: 10.1016/j.fertnstert.2007.01.166.
Aitken RJ, Gibb Z, Baker MA, Drevet J, Gharagozloo P. Causes and consequences of oxidative stress in spermatozoa. Reprod Fertil Dev. 2016;28(1-2):1-10. doi: 10.1071/rd15325.
Moazamian R, Polhemus A, Connaughton H, Fraser B, Whiting S, Gharagozloo P, et al. Oxidative stress and human spermatozoa: diagnostic and functional significance of aldehydes generated as a result of lipid peroxidation. Mol Hum Reprod. 2015;21(6):502-15. doi: 10.1093/molehr/ gav014.
Espey BT, Kielwein K, van der Ven H, Steger K, Allam JP, Paradowska-Dogan A, et al. Effects of pulsed-wave photobiomodulation therapy on human spermatozoa. Lasers Surg Med. 2022;54(4):540-53. doi: 10.1002/lsm.23399.
Henkel RR. Leukocytes and oxidative stress: dilemma for sperm function and male fertility. Asian J Androl. 2011;13(1):43-52. doi: 10.1038/aja.2010.76.
Griveau JF, Le Lannou D. Reactive oxygen species and human spermatozoa: physiology and pathology. Int J Androl. 1997;20(2):61-9. doi: 10.1046/j.1365-2605.1997.00044.x.
Ryan MT, Hoogenraad NJ. Mitochondrial-nuclear communications. Annu Rev Biochem. 2007;76:701-22. doi: 10.1146/annurev.biochem.76.052305.091720.
Mostafavinia A, Amini A, Sajadi E, Ahmadi H, Rezaei F, Ghoreishi SK, et al. Photobiomodulation therapy was more effective than photobiomodulation plus arginine on accelerating wound healing in an animal model of delayed healing wound. Lasers Med Sci. 2022;37(1):403-15. doi: 10.1007/s10103-021-03271-8.
Vo-Dinh T. Low-power laser therapy. In: Biomedical Photonics Handbook. CRC Press; 2003. p. 1265-90.
Butow RA, Avadhani NG. Mitochondrial signaling: the retrograde response. Mol Cell. 2004;14(1):1-15. doi: 10.1016/ s1097-2765(04)00179-0.
Isobe N, Yoshimura Y. Deficient proliferation and apoptosis in the granulosa and theca interna cells of the bovine cystic follicle. J Reprod Dev. 2007;53(5):1119-24. doi: 10.1262/ jrd.19041.
Ahmadi H, Bayat M, Amini A, Mostafavinia A, EbrahimpourMalekshah R, Gazor R, et al. Impact of preconditioned diabetic stem cells and photobiomodulation on quantity and degranulation of mast cells in a delayed healing wound simulation in type one diabetic rats. Lasers Med Sci. 2022;37(3):1593-604. doi: 10.1007/s10103-021-03408-9.
Durairajanayagam D, Singh D, Agarwal A, Henkel R. Causes and consequences of sperm mitochondrial dysfunction. Andrologia. 2021;53(1):e13666. doi: 10.1111/and.13666.
Brown GC. Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta. 2001;1504(1):46-57. doi: 10.1016/s0005- 2728(00)00238-3.
Karoussis IK, Kyriakidou K, Psarros C, Koutsilieris M, Vrotsos JA. Effects and action mechanism of low level laser therapy (LLLT): applications in periodontology. Dentistry. 2018;8(9):1000514. doi: 10.4172/2161-1122.1000514.
Shiva S, Gladwin MT. Shining a light on tissue NO stores: near infrared release of NO from nitrite and nitrosylated hemes. J Mol Cell Cardiol. 2009;46(1):1-3. doi: 10.1016/j. yjmcc.2008.10.005.
Amaral A, Paiva C, Attardo Parrinello C, Estanyol JM, Ballescà JL, Ramalho-Santos J, et al. Identification of proteins involved in human sperm motility using high-throughput differential proteomics. J Proteome Res. 2014;13(12):5670-84. doi: 10.1021/pr500652y.
Karu TI. Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol. 2008;84(5):1091-9. doi: 10.1111/j.1751-1097.2008.00394.x.
Lubart R, Breitbart H. Biostimulative effects of lowenergy lasers and their implications for medicine. Drug Dev Res. 2000;50(3-4):471-5. doi: 10.1002/1098- 2299(200007/08)50:3/43.0.co;2-e.
Gao X, Xing D. Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci. 2009;16(1):4. doi: 10.1186/1423-0127-16-4.
Iaffaldano N, Paventi G, Pizzuto R, Di Iorio M, Bailey JL, Manchisi A, et al. Helium-neon laser irradiation of cryopreserved ram sperm enhances cytochrome c oxidase activity and ATP levels improving semen quality. Theriogenology. 2016;86(3):778-84. doi: 10.1016/j. theriogenology.2016.02.031.
Florman HM, Jungnickel MK, Sutton KA. Regulating the acrosome reaction. Int J Dev Biol. 2008;52(5-6):503-10. doi: 10.1387/ijdb.082696hf.
Gabel CP, Carroll J, Harrison K. Sperm motility is enhanced by low level laser and light emitting diode photobiomodulation with a dose-dependent response and differential effects in fresh and frozen samples. Laser Ther. 2018;27(2):131-6. doi: 10.5978/islsm.18-OR-13.
Preece D, Chow KW, Gomez-Godinez V, Gustafson K, Esener S, Ravida N, et al. Red light improves spermatozoa motility and does not induce oxidative DNA damage. Sci Rep. 2017;7:46480. doi: 10.1038/srep46480.
Sato H, Landthaler M, Haina D, Schill WB. The effects of laser light on sperm motility and velocity in vitro. Andrologia. 1984;16(1):23-5. doi: 10.1111/j.1439-0272.1984.tb00229.x.
Wechalekar H, Setchell BP, Peirce EJ, Ricci M, Leigh C, Breed WG. Whole-body heat exposure induces membrane changes in spermatozoa from the cauda epididymidis of laboratory mice. Asian J Androl. 2010;12(4):591-8. doi: 10.1038/ aja.2010.41.
Chang CM, Lin YH, Srivastava AK, Chigrinov VG. An optical system via liquid crystal photonic devices for photobiomodulation. Sci Rep. 2018;8(1):4251. doi: 10.1038/ s41598-018-22634-w.
Lenzi A, Claroni F, Gandini L, Lombardo F, Barbieri C, Lino A, et al. Laser radiation and motility patterns of human sperm. Arch Androl. 1989;23(3):229-34. doi: 10.3109/01485018908986845.
Salman Yazdi R, Bakhshi S, Jannat Alipoor F, Akhoond MR, Borhani S, Farrahi F, et al. Effect of 830 nm diode laser irradiation on human sperm motility. Int J Fertil Steril. 2015;9(Suppl 1):68-9.
Ban Frangez H, Frangez I, Verdenik I, Jansa V, Virant Klun I. Photobiomodulation with light-emitting diodes improves sperm motility in men with asthenozoospermia. Lasers Med Sci. 2015;30(1):235-40. doi: 10.1007/s10103-014-1653-x.
Hasani A, Khosravi A, Rahimi K, Afshar A, Fadaei-Fathabadi F, Raoofi A, et al. Photobiomodulation restores spermatogenesis in the transient scrotal hyperthermia-induced mice. Life Sci. 2020;254:117767. doi: 10.1016/j.lfs.2020.117767.
Salama N, El-Sawy M. Light-emitting diode exposure enhances sperm motility in men with and without asthenospermia: preliminary results. Arch Ital Urol Androl. 2015;87(1):14-9. doi: 10.4081/aiua.2015.1.14.
Safian F, Ghaffari Novin M, Nazarian H, Shams Mofarahe Z, Abdollahifar MA, Jajarmi V, et al. Photobiomodulation preconditioned human semen protects sperm cells against detrimental effects of cryopreservation. Cryobiology. 2021;98:239-44. doi: 10.1016/j.cryobiol.2020.09.005.
Firestone RS, Esfandiari N, Moskovtsev SI, Burstein E, Videna GT, Librach C, et al. The effects of low-level laser light exposure on sperm motion characteristics and DNA damage. J Androl. 2012;33(3):469-73. doi: 10.2164/jandrol.111.013458.
Safian F, Ghaffari Novin M, Karimi M, Kazemi M, Zare F, Ghoreishi SK, et al. Photobiomodulation with 810nm wavelengths improves human sperms’ motility and viability in vitro. Photobiomodul Photomed Laser Surg. 2020;38(4):222- 31. doi: 10.1089/photob.2019.4773.
Fernandes GH, de Tarso Camillo de Carvalho P, Serra AJ, Crespilho AM, Peron JP, Rossato C, et al. The effect of lowlevel laser irradiation on sperm motility, and integrity of the plasma membrane and acrosome in cryopreserved bovine sperm. PLoS One. 2015;10(3):e0121487. doi: 10.1371/ journal.pone.0121487.
Shahar S, Wiser A, Ickowicz D, Lubart R, Shulman A, Breitbart H. Light-mediated activation reveals a key role for protein kinase A and sarcoma protein kinase in the development of sperm hyper-activated motility. Hum Reprod. 2011;26(9):2274-82. doi: 10.1093/humrep/der232.
Iaffaldano N, Rosato MP, Paventi G, Pizzuto R, Gambacorta M, Manchisi A, et al. The irradiation of rabbit sperm cells with He-Ne laser prevents their in vitro liquid storage dependent damage. Anim Reprod Sci. 2010;119(1-2):123-9. doi: 10.1016/j.anireprosci.2009.10.005.
Siqueira AF, Maria FS, Mendes CM, Hamilton TR, Dalmazzo A, Dreyer TR, et al. Effects of photobiomodulation therapy (PBMT) on bovine sperm function. Lasers Med Sci. 2016;31(6):1245-50. doi: 10.1007/s10103-016-1966-z.
Ocaña-Quero JM, Gomez-Villamandos R, Moreno-Millan M, Santisteban-Valenzuela JM. Biological effects of heliumneon (He-Ne) laser irradiation on acrosome reaction in bull sperm cells. J Photochem Photobiol B. 1997;40(3):294-8. doi: 10.1016/s1011-1344(97)00072-9.
Cohen N, Lubart R, Rubinstein S, Breitbart H. Light irradiation of mouse spermatozoa: stimulation of in vitro fertilization and calcium signals. Photochem Photobiol. 1998;68(3):407-13.
Ko EY, Sabanegh ES Jr, Agarwal A. Male infertility testing: reactive oxygen species and antioxidant capacity. Fertil Steril. 2014;102(6):1518-27. doi: 10.1016/j.fertnstert.2014.10.020.
Len JS, Koh WSD, Tan SX. The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci Rep. 2019;39(8):BSR20191601. doi: 10.1042/bsr20191601.
Farivar S, Malekshahabi T, Shiari R. Biological effects of low level laser therapy. J Lasers Med Sci. 2014;5(2):58-62.
- Abstract Viewed: 677 times
- PDF Downloaded: 436 times