Impact of Blue Light Therapy on Wound Healing in Preclinical and Clinical Subjects: A Systematic Review Blue Light on Wound Healing
Journal of Lasers in Medical Sciences,
Vol. 13 (2022),
10 January 2022
,
Page e69
Abstract
Introduction: While a wound caused by a minor cutaneous incision routinely heals in a short time, wounds from major surgical operations might need numerous days to heal and may leave an obvious cicatrix. The use of blue light therapy (BLT) to destroy infectious microorganisms and disrupt biofilm formation could be an efficient method for healing ulcers. This systematic review focused on the effects of BLT in different preclinical in vivo studies and clinical models of skin wound healing. Furthermore, this study attempted to determine what main light parameters should be tested in preclinical and clinical studies.
Methods: The online databases PubMed.gov, Google Scholar, Scopus, Web of Science, and Cochrane were searched using the keywords “blue light” and “wound healing” according to PRISMA guidelines. No publication time limit was enforced.
Results: A total of 858 articles were identified, and 17 articles in three distinct categories were included for review. They comprised two articles on humans, fourteen articles on healthy animals, and one article on diabetic animals.
Conclusion: Some studies have shown that the application of BLT on preclinical and clinical models of wound healing in vivo is able to significantly accelerate the healing process. Few studies, however, have explored the bactericidal effect of BLT on skin injury repair in burn patients. Further preclinical investigations designed to provide a better understanding of the bactericidal effect of BLT using standardized protocols, different BLT wavelengths, and different stages of the wound-healing process of infected wounds and ulcers in healthy and diabetic animals should be carried out before clinical trials can be considered. BLT could eventually be a good option for treating infected chronic wounds, including those in diabetic patients.
- Photobiomodulation; Phototherapy; Wound healing; Ulcer; Review
How to Cite
References
Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol. 2015;173(2):370-8. doi: 10.1111/bjd.13954.
Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound Healing: A Cellular Perspective. Physiol Rev. 2019;99(1):665-706. doi: 10.1152/physrev.00067.2017.
Rodriguez-Merchan EC. Surgical wound healing in bleeding disorders. Haemophilia. 2012;18(4):487-90. doi: 10.1111/j.1365-2516.2012.02760.x.
Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219-29. doi: 10.1177/0022034509359125.
Demidova-Rice TN, Hamblin MR, Herman IM. Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 1: normal and chronic wounds: biology, causes, and approaches to care. Adv Skin Wound Care. 2012;25(7):304-14. doi: 10.1097/01. ASW.0000416006.55218.d0.
Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 2009;17(6):763-71. doi: 10.1111/j.1524-475X.2009.00543.x.
Sen CK. Human wound and its burden: updated 2020 compendium of estimates. Adv Wound Care (New Rochelle). 2021;10(5):281-92. doi: 10.1089/wound.2021.0026.
Bowler PG. Antibiotic resistance and biofilm tolerance: a combined threat in the treatment of chronic infections. J Wound Care. 2018;27(5):273-7. doi: 10.12968/jowc.2018.27.5.273.
Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, Pam N, et al. Low-level laser (light) therapy (LLLT) in skin: stimulating,healing, restoring. Semin Cutan Med Surg. 2013;32(1):41-52.
Ablon G. Phototherapy with light emitting diodes: treating a broad range of medical and aesthetic conditions in dermatology. J Clin Aesthet Dermatol. 2018;11(2):21-7.
Denzinger M, Held M, Krauss S, Knorr C, Memmel C, Daigeler A, et al. Does phototherapy promote wound healing? Limitations of blue light irradiation. Wounds. 2021;33(4):91-8.
Bonnans M, Fouque L, Pelletier M, Chabert R, Pinacolo S, Restellini L, et al. Blue light: friend or foe? J Photochem Photobiol B. 2020;212:112026. doi: 10.1016/j. jphotobiol.2020.112026.
Halstead FD, Thwaite JE, Burt R, Laws TR, Raguse M, Moeller R, et al. Antibacterial activity of blue light against nosocomial wound pathogens growing planktonically and as mature biofilms. Appl Environ Microbiol. 2016;82(13):4006-16. doi: 10.1128/aem.00756-16.
Wang Y, Wang Y, Wang Y, Murray CK, Hamblin MR, Hooper DC, et al. Antimicrobial blue light inactivation of pathogenic microbes: State of the art. Drug Resist Updat. 2017;33-35:1-22. doi: 10.1016/j.drup.2017.10.002.
Shnitkind E, Yaping E, Geen S, Shalita AR, Lee WL. Antiinflammatory properties of narrow-band blue light. J Drugs Dermatol. 2006;5(7):605-10.
Plavskii VY, Mikulich AV, Tretyakova AI, Leusenka IA, Plavskaya LG, Kazyuchits OA, et al. Porphyrins and flavins as endogenous acceptors of optical radiation of blue spectral region determining photoinactivation of microbial cells. J Photochem Photobiol B. 2018;183:172-83. doi: 10.1016/j. jphotobiol.2018.04.021.
Cieplik F, Späth A, Leibl C, Gollmer A, Regensburger J, Tabenski L, et al. Blue light kills Aggregatibacter actinomycetemcomitans due to its endogenous photosensitizers. Clin Oral Investig. 2014;18(7):1763-9. doi: 10.1007/s00784-013-1151-8.
Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, Sahandi Zangabad K, Ghamarypour A, Aref AR, et al. Nanomedicine and advanced technologies for burns: preventing infection and facilitating wound healing. Adv Drug Deliv Rev. 2018;123:33-64. doi: 10.1016/j.addr.2017.08.001.
Fuchs C, Negri LB, Pham L, Tam J. Light-based devices for wound healing. Curr Dermatol Rep. 2020;9(4):261-76. doi: 10.1007/s13671-020-00309-y.
Rahmannia M, Amini A, Chien S, Bayat M. Impact of photobiomodulation on macrophages and their polarization during diabetic wound healing: a systematic review. Lasers Med Sci. 2022;37(7):2805-15. doi: 10.1007/s10103-022-03581-5.
Fraccalvieri M, Amadeo G, Bortolotti P, Ciliberti M, Garrubba A, Mosti G, et al. Effectiveness of blue light photobiomodulation therapy in the treatment of chronic wounds. Results of the Blue Light for Ulcer Reduction (B.L.U.R.) Study. Ital J Dermatol Venerol. 2022;157(2):187-94. doi: 10.23736/s2784-8671.21.07067-5.
Dini V, Romanelli M, Oranges T, Davini G, Janowska A. Blue light emission in the management of hard-to-heal wounds. Ital J Dermatol Venerol. 2021;156(6):709-13. doi: 10.23736/ s2784-8671.20.06691-2.
Lu S, Zhang X, Tang Z, Xiao H, Zhang M, Liu K, et al. Musselinspired blue-light-activated cellulose-based adhesive hydrogel with fast gelation, rapid haemostasis and antibacterial property for wound healing. Chem Eng J. 2021;417:129329. doi: 10.1016/j.cej.2021.129329.
Lv Y, Chen Z, Yang Z, Yang W, Chu W, Tu Y, et al. Evaluation of the red & blue LED effects on cutaneous refractory wound healing in male Sprague-Dawley rat using 3 different multidrug resistant bacteria. Lasers Surg Med. 2022;54(5):725-36. doi: 10.1002/lsm.23515.
Li Y, Zhang J, Xu Y, Han Y, Jiang B, Huang L, et al. The histopathological investigation of red and blue light emitting diode on treating skin wounds in Japanese big-ear white rabbit. PLoS One. 2016;11(6):e0157898. doi: 10.1371/journal.pone.0157898.
Cicchi R, Rossi F, Alfieri D, Bacci S, Tatini F, De Siena G, et al. Observation of an improved healing process in superficial skin wounds after irradiation with a blue-LED haemostatic device. J Biophotonics. 2016;9(6):645-55. doi: 10.1002/jbio.201500191.
Nour El Din S, El-Tayeb TA, Abou-Aisha K, El-Azizi M. In vitro and in vivo antimicrobial activity of combined therapy of silver nanoparticles and visible blue light against Pseudomonas aeruginosa. Int J Nanomedicine. 2016;11:1749-58. doi: 10.2147/ijn.s102398.
Figurová M, Ledecký V, Karasová M, Hluchý M, Trbolová A, Capík I, et al. Histological assessment of a combined lowlevel laser/light-emitting diode therapy (685nm/470nm) for sutured skin incisions in a porcine model: a short report. Photomed Laser Surg. 2016;34(2):53-5. doi: 10.1089/ pho.2015.4013.
Dungel P, Hartinger J, Chaudary S, Slezak P, Hofmann A, Hausner T, et al. Low level light therapy by LED of different wavelength induces angiogenesis and improves ischemic wound healing. Lasers Surg Med. 2014;46(10):773-80. doi:10.1002/lsm.22299.
Zhang Y, Zhu Y, Gupta A, Huang Y, Murray CK, Vrahas MS, et al. Antimicrobial blue light therapy for multidrug resistant Acinetobacter baumannii infection in a mouse burn model: implications for prophylaxis and treatment of combat-related wound infections. J Infect Dis. 2014;209(12):1963-71. doi: 10.1093/infdis/jit842.
Cheon MW, Kim TG, Lee YS, Kim SH. Low level light therapy by Red–Green–Blue LEDs improves healing in an excision model of Sprague–Dawley rats. Pers Ubiquitous Comput. 2013;17(7):1421-8. doi: 10.1007/s00779-012-0577-3.
Dai T, Gupta A, Huang YY, Yin R, Murray CK, Vrahas MS, et al. Blue light rescues mice from potentially fatal Pseudomonas aeruginosa burn infection: efficacy, safety, and mechanism of action. Antimicrob Agents Chemother. 2013;57(3):1238-45. doi: 10.1128/aac.01652-12.
Fushimi T, Inui S, Nakajima T, Ogasawara M, Hosokawa K, Itami S. Green light emitting diodes accelerate wound healing: characterization of the effect and its molecular basis in vitro and in vivo. Wound Repair Regen. 2012;20(2):226-35. doi: 10.1111/j.1524-475X.2012.00771.x.
Adamskaya N, Dungel P, Mittermayr R, Hartinger J, Feichtinger G, Wassermann K, et al. Light therapy by blue LED improves wound healing in an excision model in rats. Injury. 2011;42(9):917-21. doi: 10.1016/j.injury.2010.03.023.
Soyer T, Ayva S, Aliefendioğlu D, Aktuna Z, Aslan MK, Senyücel MF, et al. Effect of phototherapy on growth factor levels in neonatal rat skin. J Pediatr Surg. 2011;46(11):2128-31. doi: 10.1016/j.jpedsurg.2011.06.012.
de Sousa AP, Santos JN, Dos Reis JA Jr, Ramos TA, de Souza J, Cangussú MC, et al. Effect of LED phototherapy of three distinct wavelengths on fibroblasts on wound healing: a histological study in a rodent model. Photomed Laser Surg. 2010;28(4):547-52. doi: 10.1089/pho.2009.2605.
Cai W, Hamushan M, Zhang Y, Xu Z, Ren Z, Du J, et al. Synergistic effects of photobiomodulation therapy with combined wavelength on diabetic wound healing in vitro and in vivo. Photobiomodul Photomed Laser Surg. 2022;40(1):13-24. doi: 10.1089/photob.2021.0068.
Abe Y, Konno H, Yoshida S, Yamauchi T, Yamasaki K, Denda M, et al. Red light-promoted skin barrier recovery: spatiotemporal evaluation by transepidermal potential. PLoS One. 2019;14(7):e0219198. doi: 10.1371/journal.pone.0219198.
Kleinpenning MM, Smits T, Frunt MH, van Erp PE, van de Kerkhof PC, Gerritsen RM. Clinical and histological effects of blue light on normal skin. Photodermatol Photoimmunol Photomed. 2010;26(1):16-21. doi: 10.1111/j.1600-0781.2009.00474.x.
Simpson CR, Kohl M, Essenpreis M, Cope M. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Phys Med Biol. 1998;43(9):2465-78. doi: 10.1088/0031-9155/43/9/003.
Dai T, Gupta A, Murray CK, Vrahas MS, Tegos GP, Hamblin MR. Blue light for infectious diseases: propionibacterium acnes, Helicobacter pylori, and beyond? Drug Resist Updat. 2012;15(4):223-36. doi: 10.1016/j.drup.2012.07.001.
Colombo F, de Aguiar Pires Valença Neto A, de Sousa AP, Marchionni AM, Pinheiro AL, de Almeida Reis SR. Effect of low-level laser therapy (λ660 nm) on angiogenesis in wound healing: a immunohistochemical study in a rodent model. Braz Dent J. 2013;24(4):308-12. doi: 10.1590/0103-6440201301867.
Rei W, Cheng HY, Sun HQ. Effect of LED red-light radiation on wound healing of combined radiation-trauma injury in a mouse model. J Third Mil Med Univ. 2013;35(10):981-4.
Hamblin MR, Demidova TN. Mechanisms of low level light therapy. Proc SPIE Int Soc Opt Eng. 2006;6140:1-12. doi:10.1117/12.646294.
Ferrer-Espada R, Wang Y, Goh XS, Dai T. Antimicrobial blue light inactivation of microbial isolates in biofilms. Lasers Surg Med. 2020;52(5):472-8. doi: 10.1002/lsm.23159.
Fink D, Romanowski K, Valuckaite V, Babrowski T, Kim M, Matthews JB, et al. Pseudomonas aeruginosa potentiates the lethal effect of intestinal ischemia-reperfusion injury: the role of in vivo virulence activation. J Trauma. 2011;71(6):1575-82. doi: 10.1097/TA.0b013e31821cb7e5.
Strauss WS, Sailer R, Schneckenburger H, Akgün N, Gottfried V, Chetwer L, et al. Photodynamic efficacy of naturally occurring porphyrins in endothelial cells in vitro and microvasculature in vivo. J Photochem Photobiol B. 1997;39(2):176-84. doi: 10.1016/s1011-1344(97)00002-x.
Hamblin MR, Viveiros J, Yang C, Ahmadi A, Ganz RA, Tolkoff MJ. Helicobacter pylori accumulates photoactive porphyrins and is killed by visible light. Antimicrob Agents Chemother. 2005;49(7):2822-7. doi: 10.1128/aac.49.7.2822-2827.2005.
Wang Y, Dai T. Antimicrobial Blue Light to Treat Infections in Mouse Wounds. SPIE; 2015. 50. Centers for Disease Control and Prevention (CDC). Detection of Enterobacteriaceae isolates carrying metallo-betalactamase - United States, 2010. MMWR Morb Mortal Wkly Rep. 2010;59(24):750.
Ferrer-Espada R, Liu X, Goh XS, Dai T. Antimicrobial blue light inactivation of polymicrobial biofilms. Front Microbiol. 2019;10:721. doi: 10.3389/fmicb.2019.00721.
Leanse LG, Dos Anjos C, Mushtaq S, Dai T. Antimicrobial blue light: a ‘Magic Bullet’ for the 21st century and beyond? Adv Drug Deliv Rev. 2022;180:114057. doi: 10.1016/j. addr.2021.114057.
Wang Y, Dai T. Antimicrobial blue light: a drug-free approach for inactivating pathogenic microbes. In: Light-Based Diagnosis and Treatment of Infectious Diseases. Vol 10479. SPIE; 2018. p. 28-33. doi: 10.1117/12.2283019.
- Abstract Viewed: 790 times
- PDF Downloaded: 424 times