The Combined Effects of a Methacrylate Powder Dressing (Altrazeal Powder) and Photobiomodulation Therapy on the Healing of a Severe Diabetic Foot Ulcer in a Diabetic Patient: A Case Report Methacrylate powder plus photobiomodulation and diabetic foot ulcer
Journal of Lasers in Medical Sciences,
Vol. 13 (2022),
10 January 2022
,
Page e38
Abstract
Weakened wound healing is a popular, severe complication of patients with diabetes which poses a risk for foot infection and amputation. Researchers have searched for new treatments for treating diabetic foot ulcers (DFUs) in recent years. In this case report, for the first time, we applied photobiomodulation therapy (PBMT) and Altrazeal powder together to treat a severe case of DFU in a 47-year-old woman who was suffering from type 1 diabetes. Along with the progress of combination therapy, we observed that the ulcer area was significantly reduced, and the wound healed within 16 weeks. Furthermore, dermatitis and purulent secretion were treated, and the pain was reduced. This reported case study indicated the beneficial effect of the combination of PBMT and Altrazeal powder for the healing of a severe DFU in a patient with type one diabetes. The combined application of PBMT plus Altrazeal powder demonstrated an additive effect. Further clinical trials in the clinical setting are suggested to validate the results further. Besides, more studies in preclinical models are suggested to find the mechanism of the action of combination therapy.
Keywords:
- Photobiomodulation therapy, Altrazeal powder, Diabetic foot ulcer, Wound healing, Diabetes mellitus
How to Cite
Derakhshan, R. ., Ahmadi, H., Bayat, M. ., Mehboudi, L. ., Pourhashemi, E. ., Amini, A. ., Vatandoust, D. ., Aghamiri, S. ., Asadi, R. ., & Sabet, B. . (2022). The Combined Effects of a Methacrylate Powder Dressing (Altrazeal Powder) and Photobiomodulation Therapy on the Healing of a Severe Diabetic Foot Ulcer in a Diabetic Patient: A Case Report: Methacrylate powder plus photobiomodulation and diabetic foot ulcer. Journal of Lasers in Medical Sciences, 13, e38. Retrieved from https://journals.sbmu.ac.ir/jlms/article/view/38618
References
[1] D. Atlas, International diabetes federation, IDF Diabetes Atlas, 7th edn. Brussels, Belgium: International Diabetes Federation, (2015).
[2] P. Saeedi, I. Petersohn, P. Salpea, B. Malanda, S. Karuranga, N. Unwin, S. Colagiuri, L. Guariguata, A.A. Motala, K. Ogurtsova, Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, Diabetes research and clinical practice, 157 (2019) 107843.
[3] L. Dalla Paola, Diabetic foot wounds: the value of negative pressure wound therapy with instillation, International wound journal, 10 Suppl 1 (2013) 25-31.
[4] M. Nikoloudi, I. Eleftheriadou, A. Tentolouris, O.A. Kosta, N. Tentolouris, Diabetic foot infections: update on management, Current infectious disease reports, 20 (2018) 1-11.
[5] I. Eleftheriadou, N. Tentolouris, V. Argiana, E. Jude, A.J. Boulton, Methicillin-resistant Staphylococcus aureus in diabetic foot infections, Drugs, 70 (2010) 1785-1797.
[6] B.A. Lipsky, Diabetic foot infections: Current treatment and delaying the ‘post‐antibiotic era’, Diabetes/metabolism research and reviews, 32 (2016) 246-253.
[7] W.J. Jeffcoate, L. Vileikyte, E.J. Boyko, D.G. Armstrong, A.J. Boulton, Current challenges and opportunities in the prevention and management of diabetic foot ulcers, Diabetes care, 41 (2018) 645-652.
[8] R.H. Fitzgerald, M. Bharara, J.L. Mills, D.G. Armstrong, Use of a Nanoflex powder dressing for wound management following debridement for necrotising fasciitis in the diabetic foot, International wound journal, 6 (2009) 133-139.
[9] R.G. Carretero, M. Garrido-Ollero, A. Martinez-Alvarez, A. Cadenas-Vara, Methacrylate dressing on refractory venous leg ulcers, Case Reports, 2018 (2018) bcr-2017-223084.
[10] M. Fraccalviri, U. Morozzo, M. Salomone, E. Ruka, R. Fava, A novel methacrylate powder dressing (Altrazeal) for hard-to-heal wounds: case report, Acta Vulnologica, 12 (2014) 187-192.
[11] O. Assadian, B. Arnoldo, G. Purdue, A. Burris, E. Skrinjar, N. Duschek, D.J. Leaper, A prospective, randomised study of a novel transforming methacrylate dressing compared with a silver‐containing sodium carboxymethylcellulose dressing on partial‐thickness skin graft donor sites in burn patients, International wound journal, 12 (2015) 351-356.
[12] S.W. Jere, N.N. Houreld, H. Abrahamse, Role of the PI3K/AKT (mTOR and GSK3β) signalling pathway and photobiomodulation in diabetic wound healing, Cytokine & Growth Factor Reviews, 50 (2019) 52-59.
[13] J.-X. Ma, Q.-M. Yang, Y.-C. Xia, W.-G. Zhang, F.-F. Nie, Effect of 810 nm near-infrared laser on revascularization of ischemic flaps in rats, Photomedicine and Laser Surgery, 36 (2018) 290-297.
[14] C. Martignago, C. Tim, L. Assis, A. Andrade, P. Brassolati, P. Bossini, R. Leiebano, N. Parizotto, Preemptive treatment with photobiomodulation therapy in skin flap viability, Journal of Photochemistry and Photobiology B: Biology, 201 (2019) 111634.
[15] V. Cury, A.I.S. Moretti, L. Assis, P. Bossini, J. de Souza Crusca, C.B. Neto, R. Fangel, H.P. De Souza, M.R. Hamblin, N.A. Parizotto, Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1α and MMP-2, Journal of Photochemistry and Photobiology B: Biology, 125 (2013) 164-170.
[16] H. Ahmadi, A. Amini, F. Fadaei Fathabady, A. Mostafavinia, F. Zare, R. Ebrahimpour-Malekshah, M.N. Ghalibaf, M. Abrisham, F. Rezaei, R. Albright, Transplantation of photobiomodulation-preconditioned diabetic stem cells accelerates ischemic wound healing in diabetic rats, Stem cell research & therapy, 11 (2020) 1-14.
[17] R. Ebrahimpour-Malekshah, A. Amini, F. Zare, A. Mostafavinia, S. Davoody, N. Deravi, M. Rahmanian, S.M. Hashemi, M. Habibi, S.K. Ghoreishi, Combined therapy of photobiomodulation and adipose-derived stem cells synergistically improve healing in an ischemic, infected and delayed healing wound model in rats with type 1 diabetes mellitus, BMJ Open Diabetes Research and Care, 8 (2020) e001033.
[18] A. Moradi, F. Zare, A. Mostafavinia, S. Safaju, A. Shahbazi, M. Habibi, M.-A. Abdollahifar, S.M. Hashemi, A. Amini, S.K. Ghoreishi, Photobiomodulation plus adipose-derived stem cells improve healing of ischemic infected wounds in type 2 diabetic rats, Scientific reports, 10 (2020) 1-15.
[19] A. Amini, H. Soleimani, M.A. Abdollhifar, A. Moradi, S.K. Ghoreishi, S. Chien, M. Bayat, Stereological and gene expression examinations on the combined effects of photobiomodulation and curcumin on wound healing in type one diabetic rats, Journal of cellular biochemistry, 120 (2019) 17994-18004.
[20] T.A.d.F. Mathias, M.H.P.d.M. Jorge, O.G.d. Andrade, Morbimortalidade por causas externas na população idosa residente em município da região sul do Brasil, Revista Latino-Americana de Enfermagem, 14 (2006) 17-24.
[21] L. Cañedo-Dorantes, M. Cañedo-Ayala, Skin acute wound healing: a comprehensive review, International journal of inflammation, 2019 (2019).
[22] D. Chouhan, N. Dey, N. Bhardwaj, B.B. Mandal, Emerging and innovative approaches for wound healing and skin regeneration: Current status and advances, Biomaterials, 216 (2019) 119267.
[23] E. Coalson, E. Bishop, W. Liu, Y. Feng, M. Spezia, B. Liu, Y. Shen, D. Wu, S. Du, A.J. Li, Stem cell therapy for chronic skin wounds in the era of personalized medicine: from bench to bedside, Genes & diseases, 6 (2019) 342-358.
[24] K. Tamama, S.S. Kerpedjieva, Acceleration of wound healing by multiple growth factors and cytokines secreted from multipotential stromal cells/mesenchymal stem cells, Advances in Wound Care, 1 (2012) 177-182.
[25] J. St John, S. Brown, D. Hatef, A. Unzeitig, D. Noble, L. Waller, B. Ponder, Formulation development and in vivo testing of a novel powder wound dressing employing dehydrated hydrogel nanoparticle technology, The University of Texas Southwestern Medical Center at Dallas, Department of Plastic Surgery, (1801).
[26] C. Forstner, J. Leitgeb, R. Schuster, V. Dosch, A. Kramer, K.F. Cutting, D.J. Leaper, O. Assadian, Bacterial growth kinetics under a novel flexible methacrylate dressing serving as a drug delivery vehicle for antiseptics, International Journal of Molecular Sciences, 14 (2013) 10582-10590.
[27] P.C.L. Silveira, L.A. Silva, T.P. Freitas, A. Latini, R.A. Pinho, Effects of low-power laser irradiation (LPLI) at different wavelengths and doses on oxidative stress and fibrogenesis parameters in an animal model of wound healing, Lasers in medical science, 26 (2011) 125-131.
[28] F.d.S.d.S.D. Andrade, R.M.d.O. Clark, M.L. Ferreira, Effects of low-level laser therapy on wound healing, Revista do Colégio Brasileiro de Cirurgiões, 41 (2014) 129-133.
[29] S. Hagiwara, H. Iwasaka, K. Okuda, T. Noguchi, GaAlAs (830 nm) low‐level laser enhances peripheral endogenous opioid analgesia in rats, Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 39 (2007) 797-802.
[30] P. Krzyszczyk, R. Schloss, A. Palmer, F. Berthiaume, The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes, Frontiers in physiology, 9 (2018) 419.
[31] M.R. Hamblin, Mechanisms and applications of the anti-inflammatory effects of photobiomodulation, AIMS biophysics, 4 (2017) 337.
[32] M. Hesketh, K.B. Sahin, Z.E. West, R.Z. Murray, Macrophage phenotypes regulate scar formation and chronic wound healing, International journal of molecular sciences, 18 (2017) 1545.
[2] P. Saeedi, I. Petersohn, P. Salpea, B. Malanda, S. Karuranga, N. Unwin, S. Colagiuri, L. Guariguata, A.A. Motala, K. Ogurtsova, Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, Diabetes research and clinical practice, 157 (2019) 107843.
[3] L. Dalla Paola, Diabetic foot wounds: the value of negative pressure wound therapy with instillation, International wound journal, 10 Suppl 1 (2013) 25-31.
[4] M. Nikoloudi, I. Eleftheriadou, A. Tentolouris, O.A. Kosta, N. Tentolouris, Diabetic foot infections: update on management, Current infectious disease reports, 20 (2018) 1-11.
[5] I. Eleftheriadou, N. Tentolouris, V. Argiana, E. Jude, A.J. Boulton, Methicillin-resistant Staphylococcus aureus in diabetic foot infections, Drugs, 70 (2010) 1785-1797.
[6] B.A. Lipsky, Diabetic foot infections: Current treatment and delaying the ‘post‐antibiotic era’, Diabetes/metabolism research and reviews, 32 (2016) 246-253.
[7] W.J. Jeffcoate, L. Vileikyte, E.J. Boyko, D.G. Armstrong, A.J. Boulton, Current challenges and opportunities in the prevention and management of diabetic foot ulcers, Diabetes care, 41 (2018) 645-652.
[8] R.H. Fitzgerald, M. Bharara, J.L. Mills, D.G. Armstrong, Use of a Nanoflex powder dressing for wound management following debridement for necrotising fasciitis in the diabetic foot, International wound journal, 6 (2009) 133-139.
[9] R.G. Carretero, M. Garrido-Ollero, A. Martinez-Alvarez, A. Cadenas-Vara, Methacrylate dressing on refractory venous leg ulcers, Case Reports, 2018 (2018) bcr-2017-223084.
[10] M. Fraccalviri, U. Morozzo, M. Salomone, E. Ruka, R. Fava, A novel methacrylate powder dressing (Altrazeal) for hard-to-heal wounds: case report, Acta Vulnologica, 12 (2014) 187-192.
[11] O. Assadian, B. Arnoldo, G. Purdue, A. Burris, E. Skrinjar, N. Duschek, D.J. Leaper, A prospective, randomised study of a novel transforming methacrylate dressing compared with a silver‐containing sodium carboxymethylcellulose dressing on partial‐thickness skin graft donor sites in burn patients, International wound journal, 12 (2015) 351-356.
[12] S.W. Jere, N.N. Houreld, H. Abrahamse, Role of the PI3K/AKT (mTOR and GSK3β) signalling pathway and photobiomodulation in diabetic wound healing, Cytokine & Growth Factor Reviews, 50 (2019) 52-59.
[13] J.-X. Ma, Q.-M. Yang, Y.-C. Xia, W.-G. Zhang, F.-F. Nie, Effect of 810 nm near-infrared laser on revascularization of ischemic flaps in rats, Photomedicine and Laser Surgery, 36 (2018) 290-297.
[14] C. Martignago, C. Tim, L. Assis, A. Andrade, P. Brassolati, P. Bossini, R. Leiebano, N. Parizotto, Preemptive treatment with photobiomodulation therapy in skin flap viability, Journal of Photochemistry and Photobiology B: Biology, 201 (2019) 111634.
[15] V. Cury, A.I.S. Moretti, L. Assis, P. Bossini, J. de Souza Crusca, C.B. Neto, R. Fangel, H.P. De Souza, M.R. Hamblin, N.A. Parizotto, Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1α and MMP-2, Journal of Photochemistry and Photobiology B: Biology, 125 (2013) 164-170.
[16] H. Ahmadi, A. Amini, F. Fadaei Fathabady, A. Mostafavinia, F. Zare, R. Ebrahimpour-Malekshah, M.N. Ghalibaf, M. Abrisham, F. Rezaei, R. Albright, Transplantation of photobiomodulation-preconditioned diabetic stem cells accelerates ischemic wound healing in diabetic rats, Stem cell research & therapy, 11 (2020) 1-14.
[17] R. Ebrahimpour-Malekshah, A. Amini, F. Zare, A. Mostafavinia, S. Davoody, N. Deravi, M. Rahmanian, S.M. Hashemi, M. Habibi, S.K. Ghoreishi, Combined therapy of photobiomodulation and adipose-derived stem cells synergistically improve healing in an ischemic, infected and delayed healing wound model in rats with type 1 diabetes mellitus, BMJ Open Diabetes Research and Care, 8 (2020) e001033.
[18] A. Moradi, F. Zare, A. Mostafavinia, S. Safaju, A. Shahbazi, M. Habibi, M.-A. Abdollahifar, S.M. Hashemi, A. Amini, S.K. Ghoreishi, Photobiomodulation plus adipose-derived stem cells improve healing of ischemic infected wounds in type 2 diabetic rats, Scientific reports, 10 (2020) 1-15.
[19] A. Amini, H. Soleimani, M.A. Abdollhifar, A. Moradi, S.K. Ghoreishi, S. Chien, M. Bayat, Stereological and gene expression examinations on the combined effects of photobiomodulation and curcumin on wound healing in type one diabetic rats, Journal of cellular biochemistry, 120 (2019) 17994-18004.
[20] T.A.d.F. Mathias, M.H.P.d.M. Jorge, O.G.d. Andrade, Morbimortalidade por causas externas na população idosa residente em município da região sul do Brasil, Revista Latino-Americana de Enfermagem, 14 (2006) 17-24.
[21] L. Cañedo-Dorantes, M. Cañedo-Ayala, Skin acute wound healing: a comprehensive review, International journal of inflammation, 2019 (2019).
[22] D. Chouhan, N. Dey, N. Bhardwaj, B.B. Mandal, Emerging and innovative approaches for wound healing and skin regeneration: Current status and advances, Biomaterials, 216 (2019) 119267.
[23] E. Coalson, E. Bishop, W. Liu, Y. Feng, M. Spezia, B. Liu, Y. Shen, D. Wu, S. Du, A.J. Li, Stem cell therapy for chronic skin wounds in the era of personalized medicine: from bench to bedside, Genes & diseases, 6 (2019) 342-358.
[24] K. Tamama, S.S. Kerpedjieva, Acceleration of wound healing by multiple growth factors and cytokines secreted from multipotential stromal cells/mesenchymal stem cells, Advances in Wound Care, 1 (2012) 177-182.
[25] J. St John, S. Brown, D. Hatef, A. Unzeitig, D. Noble, L. Waller, B. Ponder, Formulation development and in vivo testing of a novel powder wound dressing employing dehydrated hydrogel nanoparticle technology, The University of Texas Southwestern Medical Center at Dallas, Department of Plastic Surgery, (1801).
[26] C. Forstner, J. Leitgeb, R. Schuster, V. Dosch, A. Kramer, K.F. Cutting, D.J. Leaper, O. Assadian, Bacterial growth kinetics under a novel flexible methacrylate dressing serving as a drug delivery vehicle for antiseptics, International Journal of Molecular Sciences, 14 (2013) 10582-10590.
[27] P.C.L. Silveira, L.A. Silva, T.P. Freitas, A. Latini, R.A. Pinho, Effects of low-power laser irradiation (LPLI) at different wavelengths and doses on oxidative stress and fibrogenesis parameters in an animal model of wound healing, Lasers in medical science, 26 (2011) 125-131.
[28] F.d.S.d.S.D. Andrade, R.M.d.O. Clark, M.L. Ferreira, Effects of low-level laser therapy on wound healing, Revista do Colégio Brasileiro de Cirurgiões, 41 (2014) 129-133.
[29] S. Hagiwara, H. Iwasaka, K. Okuda, T. Noguchi, GaAlAs (830 nm) low‐level laser enhances peripheral endogenous opioid analgesia in rats, Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 39 (2007) 797-802.
[30] P. Krzyszczyk, R. Schloss, A. Palmer, F. Berthiaume, The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes, Frontiers in physiology, 9 (2018) 419.
[31] M.R. Hamblin, Mechanisms and applications of the anti-inflammatory effects of photobiomodulation, AIMS biophysics, 4 (2017) 337.
[32] M. Hesketh, K.B. Sahin, Z.E. West, R.Z. Murray, Macrophage phenotypes regulate scar formation and chronic wound healing, International journal of molecular sciences, 18 (2017) 1545.
- Abstract Viewed: 559 times
- PDF Downloaded: 315 times