Therapeutic Effects of Photobiomodulation Therapy on Multiple Sclerosis by Regulating the Inflammatory Process and Controlling Immune Cell Activity: A Novel Promising Treatment Target
Journal of Lasers in Medical Sciences,
Vol. 13 (2022),
10 January 2022
,
Page e32
Abstract
Introduction: Multiple sclerosis (MS) is one of the autoimmune and chronic diseases of the central nervous system, this disease occurs more frequently in young people and women and leads to neurological symptoms. Oxidative stress, inflammatory process, and oligodendrocyte dysfunction has a pivotal role in the pathophysiology of this disease. Nowadays, it has been reported that Photobiomodulation (PBM) as a non-invasive threat has neuroprotective potential but the exact mechanisms are not understood. Methods: In this manuscript, we have reviewed the Photobiomodulation effects on MS. in this regard, we used "Photobiomodulation", " Laser therapy", and "Low-level laser therapy" keywords on MS to find related studies on this subject in PubMed, Google scholar, Elsevier, Medline, and Scopus databases. Results: Photobiomodulation has positive effects on MS by regulating the inflammatory process, controlling immune cell activity, and mitochondrial functions, as well as inhibiting free radicals’ production.
Conclusion: Overall, researchers have suggested that laser therapy could be considered a promising new treatment for neurodegenerative diseases, such as multiple sclerosis.
- Multiple sclerosis; Photobiomodulation; Low-level laser therapy
How to Cite
References
2. Darabi S, Noori-Zadeh A, Rajaei F, Abbaszadeh HA, Bakhtiyari S, Roozbahany NA. SMER28 attenuates dopaminergic toxicity mediated by 6-hydroxydopamine in the rats via modulating oxidative burdens and autophagy-related parameters. Neurochemical Research. 2018 Dec;43(12):2313-23.
3.Darabi SH, Tiraihi T, Noori-Zadeh A, Rajaei F, Darabi L, Abbaszadeh H. Creatine and retinoic acid effects on the induction of autophagy and differentiation of adipose tissue-derived stem cells into GABAergic-like neurons. Journal of Babol university of medical sciences. 2017 Aug 10;19(8):41-9
4.Vafaei-Nezhad S, Niknazar S, Norouzian M, Abdollahifar M-A, Aliaghaei A, Abbaszadeh HA. Therapeutics effects of [Pyr1] apelin-13 on rat contusion model of spinal cord injury: An experimental study. Journal of Chemical Neuroanatomy. 2021; 113:101924. Doi: 10.1016/j.jchemneu.2021.101924.
5. Dargahi N, Katsara M, Tselios T, Androutsou M-E, De Courten M, Matsoukas J, et al. Multiple sclerosis: immunopathology and treatment update. Brain sciences. 2017;7(7):78. Doi: 10.3390/brainsci7070078.
6. Vafaei-Nezhad S, Hassan MP, Noroozian M, Aliaghaei A, Tehrani AS, Abbaszadeh HA, et al. A review of low-level laser therapy for spinal cord injury: challenges and safety. Journal of lasers in medical sciences. 2020;11(4):363. Doi: 10.34172/jlms.2020.59.
7. Khoshsirat S, Keramatinia A, Khoramgah MS, Vafaei-Nezhad S, Niknazar S, Darabi S, et al. Exosome therapy in spinal cord injury: A review. Journal of Hearing Sciences and Otolaryngology. 2019;5(2):1-8. Doi: /10.22037/ORLFPS.v5i2.28004.
8. Smith KJ, Lassmann H. The role of nitric oxide in multiple sclerosis. The Lancet Neurology. 2002;1(4):232-41. Doi: 10.1016/S1474-4422(02)00102-3.
9. Duarte KCN, Soares TT, Magri AMP, Garcia LA, Le Sueur-Maluf L, Renno ACM, et al. Low-level laser therapy modulates demyelination in mice. Journal of Photochemistry and Photobiology B: Biology. 2018; 189:55-65. Doi: 10.1016/j.jphotobiol.2018.09.024.
10. Meamar R, Nematollahi S, Dehghani L, Mirmosayyeb O, Shayegannejad V, Basiri K, et al. The role of stem cell therapy in multiple sclerosis: An overview of the current status of the clinical studies. Advanced Biomedical Research. 2016; 5(46). Doi: 10.4103/2277-9175.178791.
11. Lassmann H, Brück W, Lucchinetti CF. The immunopathology of multiple sclerosis: an overview. Brain pathology. 2007;17(2):210-8. Doi: 10.1111/j.1750-3639.2007.00064.x.
12. Sospedra M, Martin R, editors. Immunology of multiple sclerosis. Seminars in neurology; Semin Neurol 2016; 36(02): 115-127. Doi: 10.1055/s-0036-1579739.
13. Qi X, Lewin AS, Sun L, Hauswirth WW, Guy J. Suppression of mitochondrial oxidative stress provides long-term neuroprotection in experimental optic neuritis. Investigative ophthalmology & visual science. 2007;48(2):681-91. Doi: 10.1167/iovs.06-0553.
14. Hossein‐khannazer N, Shabani S, Farokhfar M, Azizi G, Asarzadegan F, Safarpour Lima B, et al. Pivotal cytokines and their transcription factors are the targets of guluronic acid (G2013) for inhibiting the immunopathogenesis process of multiple sclerosis. Drug Development Research. 2020;81(4):511-6. Doi: 10.1002/ddr.21645.
15. Hemmer B, Archelos JJ, Hartung H-P. New concepts in the immunopathogenesis of multiple sclerosis. Nature Reviews Neuroscience. 2002;3(4):291-301. Doi: 10.1038/nrn784.
16. Hossein‐Khannazer N, Zian Z, Bakkach J, Kamali AN, Hosseinzadeh R, Anka AU, et al. Features and roles of T helper 22 cells in immunological diseases and malignancies. Scandinavian journal of immunology. 2021;93(5):e13030. Doi: 10.1111/sji.13030.
17. Venken K, Hellings N, Broekmans T, Hensen K, Rummens J-L, Stinissen P. Natural naive CD4+ CD25+ CD127low regulatory T cell (Treg) development and function are disturbed in multiple sclerosis patients: recovery of memory Treg homeostasis during disease progression. The Journal of Immunology. 2008;180(9):6411-20. Doi: 10.4049/jimmunol.180.9.6411.
18. Haas J, Fritzsching B, Trübswetter P, Korporal M, Milkova L, Fritz B, et al. Prevalence of newly generated naive regulatory T cells (Treg) is critical for Treg suppressive function and determines Treg dysfunction in multiple sclerosis. The Journal of Immunology. 2007;179(2):1322-30. Doi: 10.4049/jimmunol.179.2.1322.
19. Silva T, Fragoso YD, Destro Rodrigues MFS, Gomes AO, da Silva FC, Andreo L, et al. Effects of photobiomodulation on interleukin-10 and nitrites in individuals with relapsing-remitting multiple sclerosis–Randomized clinical trial. PloS one. 2020;15(4):e0230551. Doi: 10.1371/journal.pone.0230551.
20. Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, et al. Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Annals of neurology. 2006;59(3):478-89. Doi: 10.1002/ana.20736.
21. Bathini M, Raghushaker CR, Mahato KK. The molecular mechanisms of action of photobiomodulation against neurodegenerative diseases: a systematic review. Cellular and Molecular Neurobiology. 2020:1-17. Doi: 10.1007/s10571-020-01016-9.
22. Gao X, Xing D. Molecular mechanisms of cell proliferation induced by low power laser irradiation. Journal of biomedical science. 2009;16(1):1-16. Doi: 10.1186/1423-0127-16-4.
23. Hamblin MR. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS biophysics. 2017;4(3):337. Doi: 10.3934/biophy.2017.3.337.
24. Rojas JC, Lee J, John JM, Gonzalez-Lima F. Neuroprotective effects of near-infrared light in an in vivo model of mitochondrial optic neuropathy. Journal of Neuroscience. 2008;28(50):13511-21. Doi: 10.1523/JNEUROSCI.3457-08.2008.
25. Oron A, Oron U, Chen J, Eilam A, Zhang C, Sadeh M, et al. Low-level laser therapy applied transcranially to rats after induction of stroke significantly reduces long-term neurological deficits. Stroke. 2006;37(10):2620-4. Doi: 10.1161/01.STR.0000242775.14642.b8.
26. Leung MC, Lo SC, Siu FK, So KF. Treatment of experimentally induced transient cerebral ischemia with low energy laser inhibits nitric oxide synthase activity and up‐regulates the expression of transforming growth factor‐beta 1. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery. 2002;31(4):283-8. Doi: 10.1002/lsm.10096.
27. Thunshelle C, Hamblin MR. Transcranial low-level laser (light) therapy for brain injury. Photomedicine and laser surgery. 2016;34(12):587-98. Doi: 10.1089/pho.2015.4051.
28. Xuan W, Agrawal T, Huang L, Gupta GK, Hamblin MR. Low‐level laser therapy for traumatic brain injury in mice increases brain derived neurotrophic factor (BDNF) and synaptogenesis. Journal of biophotonics. 2015;8(6):502-11. Doi: 10.1002/jbio.201400069.
29. Sarveazad A, Janzadeh A, Taheripak G, Dameni S, Yousefifard M, Nasirinezhad F. Co-administration of human adipose-derived stem cells and low-level laser to alleviate neuropathic pain after experimental spinal cord injury. Stem cell research & therapy. 2019;10(1):1-15. Doi: 10.1186/s13287-019-1269-y.
30. Kim J, Kim E-H, Lee K, Kim B, Kim Y, Na SH, et al. Low-level laser irradiation improves motor recovery after contusive spinal cord injury in rats. Tissue engineering and regenerative medicine. 2017;14(1):57-64. Doi: 10.1007/s13770-016-0003-4.
31. Hassan MP, Abdollahifar M-A, Aliaghaei A, Tabeie F, Vafaei-Nezhad S, Norouzian M, et al. Photobiomodulation therapy improved functional recovery and overexpression of interleukins-10 after contusion spinal cord injury in rats. Journal of Chemical Neuroanatomy.2021;117:102010. Doi: 10.1016/j.jchemneu.2021.102010.
32. Torres S, De Sanctis J, de Briceno L, Hernandez N, Finol H. Inflammation and nitric oxide production in skeletal muscle of type 2 diabetic patients. Journal of Endocrinology. 2004;181(3):419-27. Doi: 10.1677/joe.0.1810419
33. Song S, Zhou F, Chen WR. Low-level laser therapy regulates microglial function through Src-mediated signaling pathways: implications for neurodegenerative diseases. Journal of neuroinflammation. 2012;9(1):1-17. Doi: 10.1186/1742-2094-9-219.
34. Yun Y-C, Jang D, Yoon S-B, Kim D, Choi D-H, Kwon O, et al. Laser acupuncture exerts neuroprotective effects via regulation of Creb, Bdnf, Bcl-2, and Bax gene expressions in the hippocampus. Evidence-Based Complementary and Alternative Medicine. 2017;2017. Doi: 10.1155/2017/7181637.
35. Cerella C, Diederich M, Ghibelli L. The dual role of calcium as messenger and stressor in cell damage, death, and survival. International journal of cell biology. 2010;2010. Doi: 10.1155/2010/546163.
36. Lapchak PA, De Taboada L. Transcranial near infrared laser treatment (NILT) increases cortical adenosine-5′-triphosphate (ATP) content following embolic strokes in rabbits. Brain research. 2010;1306:100-5. Doi: 10.1016/j.brainres.2009.10.022.
37. Huang YY, Nagata K, Tedford CE, McCarthy T, Hamblin MR. Low‐level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro. Journal of biophotonics. 2013;6(10):829-38. Doi: 10.1002/jbio.201200157.
38. Karu TI, Pyatibrat LV, Kalendo GS. Photobiological modulation of cell attachment via cytochrome c oxidase. Photochemical & Photobiological Sciences. 2004;3(2):211-6. Doi: 10.1039/b306126d.
39. Wang R, Dong Y, Lu Y, Zhang W, Brann DW, Zhang Q. Photobiomodulation for global cerebral ischemia: targeting mitochondrial dynamics and functions. Molecular neurobiology. 2019;56(3):1852-69. Doi: 10.1007/s12035-018-1191-9.
40. Khoshsirat S, Abbaszadeh HA, Khoramgah MS, Darabi S, Mansouri V, Ahmady-Roozbahany N, et al. Protective effect of photobiomodulation therapy and bone marrow stromal stem cells conditioned media on pheochromocytoma cell line 12 against oxidative stress induced by hydrogen peroxide. Journal of Lasers in Medical Sciences. 2019;10(3):163. Doi: 10.15171/jlms.2019.26.
41. Mohsenifar Z, Fridoni M, Ghatrehsamani M, Abdollahifar M-a, Abbaszadeh H, Mostafavinia A, et al. Evaluation of the effects of pulsed wave LLLT on tibial diaphysis in two rat models of experimental osteoporosis, as examined by stereological and real-time PCR gene expression analyses. Lasers in medical science. 2016;31(4):721-32. Doi: 10.1007/s10103-016-1916-9.
42. Rochkind S, Rousso M, Nissan M, Villarreal M, Barr‐Nea L, Rees D. Systemic effects of low‐power laser irradiation on the peripheral and central nervous system, cutaneous wounds, and burns. Lasers in surgery and medicine. 1989;9(2):174-82. Doi: 10.1002/lsm.1900090214.
43. Tolentino M, Lyons J. Photobiomodulation for multiple sclerosis in animal models. Photobiomodulation in the Brain: Elsevier; 2019. p. 241-51. Doi: 10.1016/B978-0-12-815305-5.00019-1.
44. Aimbire F, Santos F, Albertini R, Castro-Faria-Neto H, Mittmann J, Pacheco-Soares C. Low-level laser therapy decreases levels of lung neutrophils anti-apoptotic factors by a NF-κB dependent mechanism. International immunopharmacology. 2008;8(4):603-5. Doi: 10.1016/j.intimp.2007.12.007.
45. Svobodova B, Kloudova A, Ruzicka J, Kajtmanova L, Navratil L, Sedlacek R, et al. The effect of 808 nm and 905 nm wavelength light on recovery after spinal cord injury. Scientific reports. 2019;9(1):1-14. Doi: 10.1038/s41598-019-44141-2.
46. Chen AC, Arany PR, Huang Y-Y, Tomkinson EM, Sharma SK, Kharkwal GB, et al. Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PloS one. 2011;6(7):e22453. Doi: 10.1371/journal.pone.0022453.
47. Goncalves ED, Souza PS, Lieberknecht V, Fidelis GS, Barbosa RI, Silveira PC, et al. Low-level laser therapy ameliorates disease progression in a mouse model of multiple sclerosis. Autoimmunity. 2016;49(2):132-42. Doi: 10.3109/08916934.2015.1124425.
48. Kubsik A, Klimkiewicz R, Janczewska K, Klimkiewicz P, Jankowska A, Woldańska-Okońska M. Application of laser radiation and magnetostimulation in therapy of patients with multiple sclerosis. NeuroRehabilitation. 2016;38(2):183-90. Doi: 10.3233/NRE-161309.
49. Muili KA, Gopalakrishnan S, Meyer SL, Eells JT, Lyons J-A. Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by photobiomodulation induced by 670 nm light. PloS one. 2012;7(1):e30655. Doi: 10.1371/journal.pone.0030655.
- Abstract Viewed: 830 times
- PDF Downloaded: 605 times