Introducing Protein Homeostasis and Glycogen Synthesis as Two Targets of Blue Light Radiation in Lentinula edodes
Journal of Lasers in Medical Sciences,
Vol. 13 (2022),
10 January 2022
,
Page e47
Abstract
Introduction: There are documents about biological effects of blue light radiation on different organisms. Molecular mechanism understanding of radiation effects on biological samples is an important event which attracted attention of researchers. Determining of the critical dysregulated proteins of Lentinula edodes following blue light radiation is the aim of this study.
Methods: Number of 22 differentially expressed proteins of Lentinula edodes in response to 300 lux of blue light were extracted from literature. Experimental, text mining, and co-expression connections between the queried proteins were assessed via STRING database. The maps were compared and the critical proteins were identified.
Results: Among the 21 queried proteins, six individuals including; heat shock HSP70 protein, 20S proteasome subunit, 26S proteasome subunit P45, Aspartate aminotransferase, Phosphopyruvate hydratase, and Phosphoglucomutase were highlighted as the critical proteins in response to blue light radiation.
Conclusion: Finding indicates that protein homeostasis and glycogen synthesis are affected by blue light radiation.
- Blue light -
- Proteomics - GlycoGlycogen - Protein Degradation
- Co expression
How to Cite
References
1. Özçelik E, Pekşen A. Hazelnut husk as a substrate for the cultivation of shiitake mushroom (Lentinula edodes). Bioresource technology. 2007;98(14):2652-8.
2. Philippoussis A, Zervakis G. Cultivation of edible mushrooms in Greece: presentation of the current status and analysis of future trends. Cultivation of edible mushrooms in Greece: presentation of the current status and analysis of future trends. 2000:843-8.
3. Chang Y-S, Lee H-B, Lee S-R, Shin Z-I. Studies on the extracts preparation of Korean shiitake mushroom (Lentinus edodes). Korean Journal of Food Science and Technology. 1990;22(7):828-32.
4. Aleksandrova E, Zav'yalova L, Tereshina V, Garibova L, Feofilova E. Obtaining of fruiting bodies and submerged mycelium of Lentinus edodes (Berk.) Sing [Lentinula edodes (Berk.) Pegler]. Microbiology (New York, NY). 1998;67(5):535-9.
5. Koo C-D, Lee S-J, Lee H-Y. Morphological characteristics of decomposition and browning of oak sawdust medium for ground bed cultivation of Lentinula edodes. The Korean Journal of Mycology. 2013;41(2):85-90.
6. Takano H, Obitsu S, Beppu T, Ueda K. Light-induced carotenogenesis in Streptomyces coelicolor A3 (2): identification of an extracytoplasmic function sigma factor that directs photodependent transcription of the carotenoid biosynthesis gene cluster. Journal of bacteriology. 2005;187(5):1825-32.
7. Corrochano LM, Garre V. Photobiology in the Zygomycota: multiple photoreceptor genes for complex responses to light. Fungal Genetics and Biology. 2010;47(11):893-9.
8. Galland P. Phototropism of the Phycomyces sporangiophore: a comparison with higher plants. Photochemistry and photobiology. 1990;52(1):233-48.
9. Johnson SW, Coolbaugh RC. Light-stimulated gibberellin biosynthesis in Gibberella fujikuroi. Plant physiology. 1990;94(4):1696-701.
10. Kües U, Granado J, Hermann R, Boulianne R, Kertesz-Chaloupkova K, Aebi M. The A mating type and blue light regulate all known differentiation processes in the basidiomycete Coprinus cinereus. Molecular and General Genetics MGG. 1998;260(1):81-91.
11. Terashima K, Yuki K, Muraguchi H, Akiyama M, Kamada T. The dst1 gene involved in mushroom photomorphogenesis of Coprinus cinereus encodes a putative photoreceptor for blue light. Genetics. 2005;171(1):101-8.
12. Kim JY, Kim DY, Park Y-J, Jang M-J. Transcriptome analysis of the edible mushroom Lentinula edodes in response to blue light. PloS one. 2020;15(3):e0230680.
13. Crosson S, Rajagopal S, Moffat K. The LOV domain family: photoresponsive signaling modules coupled to diverse output domains. Biochemistry. 2003;42(1):2-10.
14. Cohen Y, Vaknin M, Ben-Naim Y, Rubin AE. Light suppresses sporulation and epidemics of Peronospora belbahrii. PLoS One. 2013;8(11):e81282.
15. Miyake T, Mori A, Kii T, Okuno T, Usui Y, Sato F, et al. Light effects on cell development and secondary metabolism in Monascus. Journal of Industrial Microbiology and Biotechnology. 2005;32(3):103-8.
16. Wu JY, Chen HB, Chen MJ, Kan SC, Shieh CJ, Liu YC. Quantitative analysis of LED effects on edible mushroom Pleurotus eryngii in solid and submerged cultures. Journal of Chemical Technology & Biotechnology. 2013;88(10):1841-6.
17. Casas-Flores S, Rios-Momberg M, Rosales-Saavedra T, Martínez-Hernández P, Olmedo-Monfil V, Herrera-Estrella A. Cross talk between a fungal blue-light perception system and the cyclic AMP signaling pathway. Eukaryotic cell. 2006;5(3):499-506.
18. Hurley JM, Chen C-H, Loros JJ, Dunlap JC. Light-inducible system for tunable protein expression in Neurospora crassa. G3: Genes| Genomes| Genetics. 2012;2(10):1207-12.
19. Dunlap JC. Proteins in the Neurospora circadian clockworks. Journal of Biological Chemistry. 2006;281(39):28489-93.
20. Kuratani M, Tanaka K, Terashima K, Muraguchi H, Nakazawa T, Nakahori K, et al. The dst2 gene essential for photomorphogenesis of Coprinopsis cinerea encodes a protein with a putative FAD-binding-4 domain. Fungal Genetics and Biology. 2010;47(2):152-8.
21. Sano H, Kaneko S, Sakamoto Y, Sato T, Shishido K. The basidiomycetous mushroom Lentinula edodes white collar-2 homolog PHRB, a partner of putative blue-light photoreceptor PHRA, binds to a specific site in the promoter region of the L. edodes tyrosinase gene. Fungal Genetics and Biology. 2009;46(4):333-41.
22. Yang C, Ma L, Ying Z, Jiang X, Lin Y. Sequence analysis and expression of a blue-light photoreceptor gene, Slwc-1 from the cauliflower mushroom Sparassis latifolia. Current microbiology. 2017;74(4):469-75.
23. Yang F, Xu B, Zhao S, Li J, Yang Y, Tang X, et al. De novo sequencing and analysis of the termite mushroom (Termitomyces albuminosus) transcriptome to discover putative genes involved in bioactive component biosynthesis. Journal of bioscience and bioengineering. 2012;114(2):228-31.
24. Park YJ, Jang MJ. Blue Light Induced Edible Mushroom (Lentinula edodes) Proteomic Analysis. Journal of Fungi. 2020;6(3):127.
25. Tanaka K. The proteasome: overview of structure and functions. Proceedings of the Japan Academy, Series B. 2009;85(1):12-36.
26. Raynes R, Pomatto LC, Davies KJ. Degradation of oxidized proteins by the proteasome: Distinguishing between the 20S, 26S, and immunoproteasome proteolytic pathways. Molecular aspects of medicine. 2016;50:41-55.
27. Murphy ME. The HSP70 family and cancer. Carcinogenesis. 2013;34(6):1181-8.
28. Jin G-Z, Zhang Y, Cong W-M, Wu X, Wang X, Wu S, et al. Phosphoglucomutase 1 inhibits hepatocellular carcinoma progression by regulating glucose trafficking. PLoS biology. 2018;16(10):e2006483.
29. Yang Y, Liu H, Zeng W, Yang Y, Zhang J, Yin J, et al. Characterization and epitope prediction of phosphopyruvate hydratase from Penaeus monodon (black tiger shrimp). Journal of Food Science. 2021;86(8):3457-66.
30. Thornburg JM, Nelson KK, Clem BF, Lane AN, Arumugam S, Simmons A, et al. Targeting aspartate aminotransferase in breast cancer. Breast Cancer Research. 2008;10(5):1-12.
- Abstract Viewed: 217 times
- PDF Downloaded: 154 times