Effect of Photobiomodulation Therapy Associated With Biphasic Phosphate Calcium on Bone Repair: A Histomorphometric Study in Rats
Journal of Lasers in Medical Sciences,
Vol. 13 (2022),
10 Dey 2022
,
Page e33
Abstract
Background: This study aimed to investigate the effects of photobiomodulation therapy associate with biphasic calcium phosphate on calvaria critical defects in rats.
Methods: Forty-eight (90days old) adult male rats (Rattus norvegicus, Albinus variation, Wistar) received critical defects with 5 mm in diameter were made on their skull and were randomly assigned into the groups: C-blood clot, B-biphasic calcium phosphate, L-photobiomodulation therapy and B+L-biphasic calcium phosphate+photobiomodulation therapy. A low-level GaAlAs was applied in a single dose tran-surgically, in a wavelength 660 nm, total dense energy density of 45 J/cm2. At 30 and 60 days, animals from each group were euthanized. Histological and histomorphometric analyzes were performed.
Results: In 30 days, almost all specimens (C, L, B and B+L) showed bone neoformation areas in regions near the borders of the surgical defect. In 60 days, in many specimens (C, L, B, B+L), it was possible to see a narrow neoformed bone structure along almost the whole extension of the surgical defect, though being thinner than the original calvary bone. Data were recorded as mean ± standard deviation, after normality was tested, suitable statistical test was applied (α= 5%). At 60 days, there was a statistically significant difference when comparing the proportion of neoformation area between group L (0.52%±0.13) and B+L (0.20%±0.08). Group L showed a difference compared with all the groups when comparing the remaining distance between de edges of neoformed bone (C×L, p=0.0431; B×L, p=0.0386; L×B+L, p=0.0352), demonstrating a great defect closure.
Conclusions: Our findings suggest that photobiomodulation therapy applied at 45 J/cm² resulted in the highest percentage of bone neoformation area after 60 days, although biphasic calcium phosphate exerts some osteogenic activity during bone repair, photobiomodulation therapy is not able to modulate this process.
- Bone Substitutes
- Biocompatible Materials
- Laser Therapy
- Rats
- Bone regeneration
How to Cite
References
1. Springfield DS. Autogenous bone grafts: nonvascular and vascular. Orthopedics. 1992 Oct;15(10):1237-41.
2. Khouri RK, Brown DM, Koudsi B, Deune EG, Gilula LA, Cooley BC, Reddi AH. Repair of calvarial defects with flap tissue: role of bone morphogenetic proteins and competent responding tissues. Plast Reconstr Surg.1996 Jul;98(1):103-9.
3. Klijn RJ, Meijer GJ, Bronkhorst EM, Jansen JA. A meta-analysis of histomorphometric results and graft healing time of various biomaterials compared to autologous bone used as sinus floor augmentation material in humans. Tissue Eng Part B Rev. 2010 Oct;16(5):493-507.
4. Chaushu G, Mardinger O, Calderon S, Moses O, Nissan J. The use of cancellous block allograft for sinus floor augmentation with simultaneous implant placement in the posterior atrophic maxilla. J Periodontol. 2009 Mar;80(3):422-8.
5. Sbordone L, Toti P, Menchini-Fabris G, Sbordone C, Guidetti F. Implant success in sinus-lifted maxillae and native bone: a 3-year clinical and computerized tomographic follow-up. Int J Oral Maxillofac Implants. 2009 Mar-Apr;24(2):316-24.
6. Galindo-Moreno P, Avila G, Fernández-Barbero JE, Aguilar M, Sánchez-Fernández E, Cutando A, Wang HL. Evaluation of sinus floor elevation using a composite bone graft mixture. Clin Oral Implants Res. 2007 Jun;18(3):376-82.
7. Schmitt CM, Doering H, Schmidt T, Lutz R, Neukam FW, Schlegel KA. Histological results after maxillary sinus augmentation with Straumann® BoneCeramic, Bio-Oss®, Puros®, and autologous bone. A randomized controlled clinical trial. Clin Oral Implants Res. 2013 May;24(5):576-85.
8. Cordaro L, Bosshardt DD, Palattella P, Rao W, Serino G, Chiapasco M. Maxillary sinus grafting with Bio-Oss or Straumann Bone Ceramic: histomorphometric results from a randomized controlled multicenter clinical trial. Clin Oral Implants Res. 2008 Aug;19(8):796-803.
9. Nkenke E, Stelzle F. Clinical outcomes of sinus floor augmentation for implant placement using autogenous bone or bone substitutes: a systematic review. Clin Oral Implants Res. 2009 Sep;20 Suppl 4:124-33.
10. Brennan MÁ, Renaud A, Amiaud J, Rojewski MT, Schrezenmeier H, Heymann D, Trichet V, Layrolle P. Pre-clinical studies of bone regeneration with human bone marrow stromal cells and biphasic calcium phosphate. Stem Cell Res Ther. 2014 Oct 13;5(5):114.
11. Dadsetan M, Guda T, Runge MB, Mijares D, LeGeros RZ, LeGeros JP, Silliman DT, Lu L, Wenke JC, Brown Baer PR, Yaszemski MJ. Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds. Acta Biomater. 2015 May;18:9-20.
12. Franco RA, Sadiasa A, Seo HS, Lee BT. Biphasic calcium phosphate loading on polycaprolactone/poly(lacto-co-glycolic acid) membranes for improved tensile strength, in vitro biocompatibility, and in vivo tissue regeneration. J Biomater Appl. 2014 Apr;28(8):1164-79.
13. Dahlin C, Obrecht M, Dard M, Donos N. Bone tissue modelling and remodelling following guided bone regeneration in combination with biphasic calcium phosphate materials presenting different microporosity. Clin Oral Implants Res. 2015 Jul;26(7):814-22.
14. Bruder SP, Kraus KH, Goldberg VM, Kadiyala S. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am. 1998 Jul;80(7):985-96.
15. Shirkhanzadeh M, Azadegan M. Formation of carbonate apatite on calcium phosphate coatings containing silver ions. J Mater Sci Mater Med. 1998 Jul;9(7):385-91.
16. Aravamudhan A, Ramos DM, Nip J, Subramanian A, James R, Harmon MD, Yu X, Kumbar SG. Osteoinductive small molecules: growth factor alternatives for bone tissue engineering. Curr Pharm Des. 2013;19(19):3420-8.
17. Pinheiro AL, Gerbi ME. Photoengineering of bone repair processes. Photomed Laser Surg. 2006 Apr;24(2):169-78.
18. Renno AC, McDonnell PA, Crovace MC, Zanotto ED, Laakso L. Effect of 830 nm laser phototherapy on osteoblasts grown in vitro on Biosilicate scaffolds. Photomed Laser Surg. 2010 Feb;28(1):131-3.
19. Ozawa Y, Shimizu N, Kariya G, Abiko Y. Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone. 1998 Apr;22(4):347-54.
20. Matsumoto MA, Ferino RV, Monteleone GF, Ribeiro DA. Low-level laser therapy modulates cyclo-oxygenase-2 expression during bone repair in rats. Lasers Med Sci. 2009 Mar;24(2):195-201.
21. Oliveira P, Ribeiro DA, Pipi EF, Driusso P, Parizotto NA, Renno AC. Low level laser therapy does not modulate the outcomes of a highly bioactive glass-ceramic (Biosilicate) on bone consolidation in rats. J Mater Sci Mater Med. 2010 Apr;21(4):1379-84.
22. Fangel R, Bossini PS, Renno AC, Ribeiro DA, Wang CC, Toma RL, Nonaka KO, Driusso P, Parizotto NA, Oishi J. Low-level laser therapy, at 60 J/cm2 associated with a Biosilicate(®) increase in bone deposition and indentation biomechanical properties of callus in osteopenic rats. J Biomed Opt. 2011 Jul;16(7):078001.
23. Cunha MJ, Esper LA, Sbrana MC, de Oliveira PG, do Valle AL, de Almeida AL. Effect of low-level laser on bone defects treated with bovine or autogenous bone grafts: in vivo study in rat calvaria. Biomed Res Int. 2014;2014:104230. doi: 10.1155/2014/104230. Epub 2014 May 28.
24. Garcia VG, Sahyon AS, Longo M, Fernandes LA, Gualberto Junior EC, Novaes VC, Ervolino E, de Almeida JM, Theodoro LH. Effect of LLLT on autogenous bone grafts in the repair of critical size defects in the calvaria of immunosuppressed rats. J Craniomaxillofac Surg. 2014 Oct;42(7):1196-202.
25. Calixto JC, Lima CE, Frederico L, Lima RP, Anbinder AL. The influence of local administration of simvastatin in calvarial bone healing in rats. J Craniomaxillofac Surg. 2011 Apr;39(3):215-20.
26. Nagata MJ, Santinoni CS, Pola NM, de Campos N, Messora MR, Bomfim SR, Ervolino E, Fucini SE, Faleiros PL, Garcia VG, Bosco AF. Bone marrow aspirate combined with low-level laser therapy: a new therapeutic approach to enhance bone healing. J Photochem Photobiol B. 2013 Apr 5;121:6-14.
27. Torquato LC, Chelin Suárez EA, Bernardo DV, Ribeiro Pinto IL, et al. Bone repair assessment of critical size defects in rats treated with mineralized bovine bone (Bio-Oss®) and photobiomodulation therapy: a histomorphometric and immunohistochemical study. Lasers Med Sci. 2021 Jan 5. doi: 10.1007/s10103-020-03234-5.
28. De Marco AC, Torquato LC, Gonçalves PR, Ribeiro TC, Nunes CM, Bernardo DV, Gomes MF, Jardini MAN, Santamaria MP. The effect of photobiomodulation therapy in different doses on bone repair of critical size defects in rats: a histomorphometric study. J Lasers Med Sci. 2021;12:e53. doi:10.34172/jlms.2021.53.
29. Messora MR, Nagata MJ, Dornelles RC, Bomfim SR, Furlaneto FA, de Melo LG, Deliberador TM, Bosco AF, Garcia VG, Fucini SE. Bone healing in critical-size defects treated with platelet-rich plasma activated by two different methods. A histologic and histometric study in rat calvaria. J Periodontal Res. 2008 Dec;43(6):723-9.
30. Nunes CMM, Ferreira CL, Bernardo DV, Oblack GB, Longo M, Santamaria MP, Jardini MAN. The influence of LLLT applied on applied on calvarial defect in rats under effect of cigarette smoke. J Appl Oral Sci. 2019; 27: e20180621. https://doi.org/10.1590/1678-7757-2018-0621.
31. Medalha CC, Santos AL, Veronez Sde O, Fernandes KR, Magri AM, Renno AC. Low level laser therapy accelerates bone healing in spinal cord injured rats. J Photochem Photobiol B. 2016 Jun;159:179-85.
32.de Vasconcellos LM, Barbara MA, da Silva Rovai E, de Oliveira França M, Ebrahim ZF, de Vasconcellos LG, Porto CD, Cairo CA. Titanium scaffold osteogenesis in healthy and osteoporotic rats is improved by the use of low-level laser therapy (GaAlAs). Lasers Med Sci. 2016 Jul;31(5):899-905.
33. Bosco AF, Faleiros PL, Carmona LR, Garcia VG, Theodoro LH, de Araujo NJ, Nagata MJ, de Almeida JM. Effects of low-level laser therapy on bone healing of critical-size defects treated with bovine bone graft. J Photochem Photobiol B 2016 Oct;163:303–310. https://doi.org/10.1016/j.jphotobiol.2016.08.040.
34. Marques L, Holgado LA, Francischone LA, Ximenez JP, Okamoto R, Kinoshita A. New LLLT protocol to speed up the bone healing process-histometric and immunohistochemical analysis in rat calvarial bone defect. Lasers Med Sci. 2014 Apr 23. [Epub ahead of print]
35. Rasouli Ghahroudi AA, Rokn AR, Kalhori KA, Khorsand A, Pournabi A, Pinheiro AL, Fekrazad R. Effect of low-level laser therapy irradiation and Bio-Oss graft material on the osteogenesis process in rabbit calvarium defects: a double blind experimental study. Lasers Med Sci. 2014 May;29(3):925-32.
36. Garcia VG, da Conceição JM, Fernandes LA, de Almeida JM, Nagata MJ, Bosco AF, Theodoro LH. Effects of LLLT in combination with bisphosphonate on bone healing in critical size defects: a histological and histometric study in rat calvaria. Lasers Med Sci. 2013 Feb;28(2):407-14.
37. Fabris ALS, Faverani LP, Gomes-Ferreira PHS, Braga Polo TO, Santiago-Júnior JF, Okamoto R. Bone repair access of BoneCeramicTM in 5-mm defects: study on rat calvaria. J Appl Oral Sci. 2018 Jan 15;26:e20160531. doi: 10.1590/1678-7757-2016-0531.
38. Barbeck M, Dard M, Kokkinopoulou M, Markl J, Booms P, Sader RA, Kirkpatrick CJ, Ghanaati S. Small-sized granules of biphasic bone substitutes support fast implant bed vascularization. Biomatter. 2015;5:e1056943.
39. de Freitas LF, Hamblin MR. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J Sel Top Quantum Electron. 2016;22(3):7000417. doi:10.1109/JSTQE.2016.2561201.
40. Khalil NM, Noureldin MG. Comparison of Single Versus Multiple Low-Level Laser Applications on Bone Formation in Extraction Socket Healing in Rabbits (Histologic and Histomorphometric Study). J Oral Maxillofac Surg. 2019 Sep;77(9):1760-1768. doi: 10.1016/j.joms.2019.03.037. Epub 2019 Apr 5.
- Abstract Viewed: 1253 times
- PDF Downloaded: 204 times
- supplementary Downloaded: 29 times