Effect of Er: YAG Laser Irradiation on Bone Metabolism-Related Factors Using Cultured Human Osteoblasts Examination of the effect of Er: YAG laser irradiation using osteoblasts
Journal of Lasers in Medical Sciences,
Vol. 14 (2023),
29 January 2023
,
Page e9
Abstract
Introduction: A variety of laser treatments have been applied in numerous medical fields. In dentistry, laser treatments are used for caries, root canals, and periodontal disease, as well as surgical resection. Numerous reports have recently been published on the use of lasers for bone regeneration. If laser irradiation is found to promote the activation of bone metabolism, it might also be effective for periodontal treatment, peri implantitis, and bone regeneration. Therefore, the present in vitro study aimed to elucidate the mechanisms underlying the effects of erbium-doped yttrium aluminum garnet (Er: YAG) laser irradiation on the bone using osteoblast-like cells.
Methods: Osteoblast-like Saos 2 cells (5.0×104 cells) were seeded in 24-well plates. 24 hours after being seeded, the cells were subjected to 0.3 W, 0.6 W, and 2.0 W Er: YAG laser irradiation and then allowed to recover for 48 hours. The expression levels of bone metabolism-related factors alkaline phosphatase (ALP), bone sialoprotein (BSP), and osteoprotegerin (OPG) were then evaluated using reverse transcription–quantitative polymerase chain reaction and western blot analyses.
Results: Saos 2 cells subjected to Er: YAG laser irradiation at 0.3 W, 0.6 W, and 2.0 W showed normal growth. When the Er: YAG laser irradiation and control groups were compared after 48 hours, increases were observed in ALP, BSP, and OPG gene and protein expression in the 2.0 W group. Similar results were obtained in the western blot analysis.
Conclusion: These findings suggest that the Er: YAG laser irradiation of osteoblast-like cells is effective for activating bone metabolism factors.
- bone metabolism, bone restoration, Er:YAG laser, osteoblasts
How to Cite
References
2. Bodrumlu E, Keskiner I, Sumer M, Sumer AP, Telcıoglu NT. Temperature variation during apicectomy with Er:YAG laser. Photomed Laser Surg. 2012;30(8):425–8. doi:10.1089/pho.2012.3256
3. Fujiyama K, Deguchi T, Murakami T, Fujii A, Kushima K, Takano-Yamamoto T. Clinical effect of CO(2) laser in reducing pain in orthodontics. Angle Orthod. 2008;78(2):299–303. doi:10.2319/033007-153.1
4. Doshi-Mehta G, Bhad-Patil WA. Efficacy of low-intensity laser therapy in reducing treatment time and orthodontic pain: A clinical investigation. Am J Orthod Dentofacial Orthop. 2012;141(3):289–97. doi:10.1016/j.ajodo.2011.09.009
5. Macedo HS, Messias DC, Rached-Júnior FJ, Oliveira LT, Silva-Sousa YT, Raucci-Neto W. 1064-nm Nd:YAG and 980-nm diode laser EDTA agitation on the retention of an epoxy-based sealer to root dentin. Braz Dent J. 2016;27(4):424–9. doi:10.1590/0103-6440201601006
6. Pokrowiecki R, Mielczarek A, Zaręba T, Tyski S. Oral microbiome and peri-implant diseases: Where are we now. Ther Clin Risk Manag. 2017;13:1529–42. doi:10.2147/TCRM.S139795
7. Pinar EH, Tim DE, Vladimir S, Vedat Y, Dimitris NT, Binnaz L. Peri-implant versus periodontal wound healing. J Clin Periodontol. 2013;40(8):816–24. doi:10.1111/jcpe.12127
8. Ausra R, Tellervo T. The efficacy of supportive peri-implant therapies in preventing peri-implantitis and implant loss: A systematic review of the literature. J Oral Maxillofac Res. 2016;7(3):e12. doi:10.5037/jomr.2016.7312
9. Frank S, Andrea S, Jürgen B. Efficacy of alternative or adjunctive measures to conventional treatment of peri-implant mucositis and peri-implantitis: a systematic review and meta-analysis. Int J Implant Dent. 2012;1(1):22. doi:10.1186%2Fs40729-015-0023-1
10. Norton MR. Efficacy of Er:YAG laser in the decontamination of peri-implant disease: A one-year prospective closed cohort study. Int J Periodontics Restorative Dent. 2017;37(6):781–8. doi:10.11607/prd.3324
11. Abbas M, Sima S, Reza F, Roohollah B, Nasim C. Implant surface temperature changes during Er:YAG laser irradiation with different cooling systems. J Dent (Tehran). 2014;11(2):210–5
12. Fernando SL, Shan-Huey Y, Hom-Lay W. Non-surgical therapy for peri-implant diseases: A systematic review. J Oral Maxillofac Res. 2016;7(3):e13. doi:10.5037/jomr.2016.7313
13. Wang, LW, Shi L, Zhang F, Zheng S. Comparison of clinical parameters, microbiological effects and calprotectin counts in gingival crevicular fluid between Er: YAG laser and conventional periodontal therapies: A split-mouth, single-blinded, randomized controlled trial. Medicine (Baltimore). 2017;96(51):e9367. doi:10.1097/MD.0000000000009367
14. Sumra N, Kulshrestha R, Umale V, Chandurkar K. Lasers in non-surgical periodontal treatment – a review. J Cosmet Laser Ther. 2019;21(5):255–61. doi:10.1080/14764172.2018.1525744
15. Kunimatsu R, Gunji H, Tsuka Y, Yoshimi Y, Awada T, Sumi K, et al. Effects of high-frequency near-infrared diode laser irradiation on the proliferation and migration of mouse calvarial osteoblasts. Lasers Med Sci. 2018;33:959–66. doi:10.1007/s10103-017-2426-0
16. Tsuka Y, Kunimatsu R, Gunji H, Nakajima K, Kimura A, Hiraki T, et al. Effects of Nd:YAG low level laser irradiation on cultured human osteoblasts migration and ATP production: in vitro study. Lasers Med Sci. 2018;34(1):55–60. doi:10.1007/s10103-018-2586-6
17. Tsuka Y, Kunimatsu R, Gunji H, Nakajima K, Hiraki T, Nakatani A, et al. Molecular biological and histological effects of Er:YAG laser irradiation on tooth movement. J Oral Sci. 2019;61(1):67–72. doi:10.2334/josnusd.17-0472
18. Tsuka Y, Fujita T, Shirakura M, Kunimatsu R, Su S-C, Fujii E, et al. Effects of neodymium-doped yttrium aluminium garnet (Nd:YAG) laser irradiation on bone metabolism during tooth movement. J Laser Med Sci. 2016;7(1):40–4. doi:10.15171/jlms.2016.09
19. Gunji H, Kunimatsu R, Tsuka Y, Yoshimi Y, Sumi K, Awada T, et al. Effect of high-frequency near-infrared diode laser irradiation on periodontal tissues during experimental tooth movement in rats. Lasers Surg Med. 2018;50(6):772–80. doi:10.1002/lsm.22797
20. Aleksic V, Aoki A, Iwasaki K, Takasaki AA, Wang C-Y, Abiko Y, et al. Low-level Er:YAG laser irradiation enhances osteoblast proliferation through activation of MAPK/ERK. Lasers Med Sci. 2010;25(4):559–69. doi:10.1007/s10103-010-0761-5
21. Tuner J. The new laser therapy handbook: A guide for research scientists, doctors, dentists, veterinarians and other interested parties within the medical field. Prima Books, Grängesberg; 2010
22. Hamblin MR. Handbook of low-level laser therapy. Pan Stanford Publishing Pte. Ltd., Singapore; 2017. doi:10.1201/9781315364827
23. Niimi H, Ohsugi Y, Katagiri S, Watanabe K, Hatasa M, Shimohira T, et al. Effects of low-level Er:YAG laser irradiation on proliferation and calcification of primary osteoblast-like cells isolated from rat calvaria. Front Cell Dev Biol. 2020;8:459. doi:10.3389/fcell.2020.00459
24. Lee JH, Heo SJ, Koak JY, Kim SK, Lee SJ, Lee SH. Cellular responses on anodized titanium discs after laser irradiation. Lasers Surg Med. 2008;40(10):738–42. doi:10.1002/lsm.20721
25. Sasaki Y., Wang S., Ogata Y. Transcriptional regulation of bone sialoprotein gene by CO2 laser irradiation. J Oral Sci. 2011;53:51–9. doi:10.2334/josnusd.53.51
26. Reza A, Mahdi K, Mitra GA, Arian H. Effect of low level laser therapy on proliferation and differentiation of the cells contributing in bone regeneration. J Lasers Med Sci. 2014;5(4):163–70
27. Ueda Y, Shimizu N. Pulse irradiation of low-power laser stimulates bone nodule formation. J Oral Sci. 2001;43(1):55–60. doi:10.2334/josnusd.43.55
28. Tsuka Y, Kunimatsu R, Gunji H, Abe T, Medina CC, Nakajima K, et al. Examination of the effect of the combined use of Nd:YAG laser irradiation and mechanical force loading on bone metabolism using cultured human osteoblasts. J Lasers Med Sci. 2020;11(2):138–43. doi:10.34172/jlms.2020.24
29. Ohshiro T, Calderhead RG. Development of low reactive-level laser therapy and its present status. J Clin Laser Med Surg. 1991;9(4):267–75. doi:10.1089/clm.1991.9.267
30. Verschueren RC, Koudstaal J, Oldhoff J. The carbon dioxide laser, some possibilities in surgery. Acta Chir Belg. 1975;74(2):197–204.
31. Giannelli M, Bani D, Tani A, Materassi F, Chellini F, Sassoli C. Effects of an erbium:yttrium-aluminum-garnet laser and ultrasonic scaler on titanium dioxide-coated titanium surfaces contaminated with subgingival plaque: An in vitro study to assess post-treatment biocompatibility with osteogenic cells. J Periodontol. 2017;88(11):1211–20. doi:10.1902/jop.2017.170195
32. Galli C, Macaluso GM, Elezi E, Ravanetti F, Cacchioli A, Gualini G, et al. The effects of Er:YAG laser treatment on titanium surface profile and osteoblastic cell activity: An in vitro study. J Periodontol. 2011;82(8):1169–77. doi:10.1902/jop.2010.100428
33. Deguchi T, Kim DG, Kamioka H. CO2 low-level laser therapy has an early but not delayed pain effect during experimental tooth movement. Orthod Craniofac Res. 2017;20:172–6. doi:10.1111/ocr.12158
34. Hendrick DA, Meyers A. Wound healing after laser surgery. Otolaryngol Clin North Am. 1995;28(5):969–86. doi:10.1016/S0030-6665(20)30470-9
35. Pourzarandian A, Watanabe H, Aoki A, Ichinose S, Sasaki KM, et al. Histological and TEM examination of early stages of bone healing after Er:YAG laser irradiation. Photomed Laser Surg. 2004;22(4):342–50. doi:10.1089/pho.2004.22.342
- Abstract Viewed: 526 times
- PDF Downloaded: 514 times