In Vitro Efficacy of Antimicrobial Photodynamic Therapy With Phycocyanin and Diode Laser for the Reduction of Porphyromonas gingivalis
Journal of Lasers in Medical Sciences,
Vol. 13 (2022),
10 January 2022
,
Page e55
Abstract
Objectives: This study sought to assess the efficacy of antimicrobial photodynamic therapy (aPDT) with phycocyanin and diode laser for reduction of Porphyromonas gingivalis (P. gingivalis).
Materials and Methods: In this in vitro, experimental study, first the minimum inhibitory concentration (MIC) of phycocyanin, the sub-lethal exposure time of diode laser, and the sub-lethal dose of aPDT were determined. The wells containing P. gingivalis suspension were randomly divided into three experimental groups for exposure to ½ MIC phycocyanin for 5 min, minimum lethal dose of diode laser (635 nm, 4 min), and aPDT with phycocyanin and diode laser. The positive control group was exposed to 0.2% chlorhexidine (CHX) for 5 min, and the negative control group received no treatment. The colony count was calculated in the five groups and compared using one-way ANOVA and t-test.
Results: aPDT with diode laser (635 nm, 4 min) and 125 µg/mL phycocyanin caused significantly greater reduction of P. gingivalis count (mean reduction of 44.24%) compared with other groups (P<0.0001). Minimum and maximum colony counts were noted in 0.2% CHX and negative control groups, respectively. The reduction in colony count was significant in all experimental groups, compared with the control group (P<0.0001).
Conclusion: aPDT with 635 nm diode laser and phycocyanin can significantly decrease P. gingivalis count in vitro. Considering the conservative nature of this modality, it may be used for decontamination of peri-implant
- Photochemotherapy; Phycocyanin; Porphyromonas gingivalis, Antimicrobial photodynamic therapy, Peri-implant
How to Cite
References
[2] N.U. Zitzmann, T. Berglundh, Definition and prevalence of peri-implant diseases, J Clin Periodontol 35(8 Suppl) (2008) 286-91.
[3] W. Becker, B.E. Becker, M.G. Newman, S. Nyman, Clinical and microbiologic findings that may contribute to dental implant failure, Int J Oral Maxillofac Implants 5(1) (1990) 31-8.
[4] A. Mombelli, M. Marxer, T. Gaberthuel, U. Grunder, N.P. Lang, The microbiota of osseointegrated implants in patients with a history of periodontal disease, J Clin Periodontol 22(2) (1995) 124-30.
[5] S. Renvert, A.M. Roos-Jansaker, N. Claffey, Non-surgical treatment of peri-implant mucositis and peri-implantitis: a literature review, J Clin Periodontol 35(8 Suppl) (2008) 305-15.
[6] R. Smeets, A. Henningsen, O. Jung, M. Heiland, C. Hammacher, J.M. Stein, Definition, etiology, prevention and treatment of peri-implantitis--a review, Head Face Med 10 (2014) 34.
[7] A. Louropoulou, D.E. Slot, F.A. Van der Weijden, Titanium surface alterations following the use of different mechanical instruments: a systematic review, Clin Oral Implants Res 23(6) (2012) 643-658.
[8] F. Sayar, N. Chiniforush, A. Bahador, A. Etemadi, N. Akhondi, C. Azimi, Efficacy of antimicrobial photodynamic therapy for elimination of Aggregatibacter actinomycetemcomitans biofilm on Laser-Lok titanium discs, Photodiagnosis Photodyn Ther 27 (2019) 462-466.
[9] A.A. Takasaki, A. Aoki, K. Mizutani, F. Schwarz, A. Sculean, C.Y. Wang, G. Koshy, G. Romanos, I. Ishikawa, Y. Izumi, Application of antimicrobial photodynamic therapy in periodontal and peri-implant diseases, Periodontol 2000 51 (2009) 109-40.
[10] T. Dai, Y.Y. Huang, M.R. Hamblin, Photodynamic therapy for localized infections--state of the art, Photodiagnosis Photodyn Ther 6(3-4) (2009) 170-88.
[11] N. Chiniforush, M. Pourhajibagher, S. Parker, S. Shahabi, A. Bahador, The in vitro effect of antimicrobial photodynamic therapy with indocyanine green on Enterococcus faecalis: Influence of a washing vs non-washing procedure, Photodiagnosis Photodyn Ther 16 (2016) 119-123.
[12] D. Schar, C.A. Ramseier, S. Eick, N.B. Arweiler, A. Sculean, G.E. Salvi, Anti-infective therapy of peri-implantitis with adjunctive local drug delivery or photodynamic therapy: six-month outcomes of a prospective randomized clinical trial, Clin Oral Implants Res 24(1) (2013) 104-10.
[13] N. Chiniforush, M. Pourhajibagher, S. Parker, S. Benedicenti, A. Bahador, T. Sălăgean, I.R. Bordea, The Effect of Antimicrobial Photodynamic Therapy Using Chlorophyllin–Phycocyanin Mixture on Enterococcus faecalis: The Influence of Different Light Sources, Applied Sciences 10(12) (2020).
[14] A. Etemadi, S. Eftfkhari Bayati, M. Pourhajibagher, N. Chiniforoush, In vitro effect of antimicrobial photodynamic therapy with phycocyanin on Aggregatibacter actinomycetemcomitans biofilm on SLA titanium discs, Photodiagnosis Photodyn Ther (2020) 102062.
[15] A. Saffarpour, R. Fekrazad, M.N. Heibati, A. Bahador, A. Saffarpour, A.R. Rokn, A. Iranparvar, M.J. KharaziFard, Bactericidal Effect of Erbium-Doped Yttrium Aluminum Garnet Laser and Photodynamic Therapy on Aggregatibacter Actinomycetemcomitans Biofilm on Implant Surface, Int J Oral Maxillofac Implants 31(3) (2016) e71-8.
[16] A.A. Miles, S.S. Misra, J.O. Irwin, The estimation of the bactericidal power of the blood, J Hyg (Lond) 38(6) (1938) 732-49.
[17] M. Pourhajibagher, N. Chiniforush, S. Shahabi, R. Ghorbanzadeh, A. Bahador, Sub-lethal doses of photodynamic therapy affect biofilm formation ability and metabolic activity of Enterococcus faecalis, Photodiagnosis Photodyn Ther 15 (2016) 159-66.
[18] N. Moslemi, N. Rouzmeh, F. Shakerinia, A. Bahador, P. Soleimanzadeh Azar, M.J. Kharazifard, M. Paknejad, R. Fekrazad, Photodynamic Inactivation of Porphyromonas gingivalis utilizing Radachlorin and Toluidine Blue O as Photosensitizers: An In Vitro Study, J Lasers Med Sci 9(2) (2018) 107-112.
[19] P. Braham, C. Herron, C. Street, R. Darveau, Antimicrobial photodynamic therapy may promote periodontal healing through multiple mechanisms, J Periodontol 80(11) (2009) 1790-8.
[20] R.R. de Oliveira, H.O. Schwartz-Filho, A.B. Novaes, G.P. Garlet, R.F. de Souza, M. Taba, S.L. Scombatti de Souza, F.J. Ribeiro, Antimicrobial photodynamic therapy in the non-surgical treatment of aggressive periodontitis: cytokine profile in gingival crevicular fluid, preliminary results, J Periodontol 80(1) (2009) 98-105.
[21] M. Hfaiedh, D. Brahmi, L. Zourgui, Protective role of cactus cladodes extract on sodium dichromate-induced testicular injury and oxidative stress in rats, Biol Trace Elem Res 159(1-3) (2014) 304-11.
[22] V. Lobo, A. Patil, A. Phatak, N. Chandra, Free radicals, antioxidants and functional foods: Impact on human health, Pharmacogn Rev 4(8) (2010) 118-26.
[23] S. Afrasiabi, M. Pourhajibagher, N. Chiniforush, M. Aminian, A. Bahador, Anti-biofilm and anti-metabolic effects of antimicrobial photodynamic therapy using chlorophyllin-phycocyanin mixture against Streptococcus mutans in experimental biofilm caries model on enamel slabs, Photodiagnosis Photodyn Ther 29 (2020) 101620.
[24] M. Pourhajibagher, N. Chiniforush, A. Bahador, Antimicrobial action of photoactivated C-Phycocyanin against Enterococcus faecalis biofilms: Attenuation of quorum-sensing system, Photodiagnosis Photodyn Ther 28 (2019) 286-291.
[25] A. Minnock, D.I. Vernon, J. Schofield, J. Griffiths, J.H. Parish, S.B. Brown, Mechanism of uptake of a cationic water-soluble pyridinium zinc phthalocyanine across the outer membrane of Escherichia coli, Antimicrob Agents Chemother 44(3) (2000) 522-7.
[26] Y. Chan, C.H. Lai, Bactericidal effects of different laser wavelengths on periodontopathic germs in photodynamic therapy, Lasers Med Sci 18(1) (2003) 51-5.
[27] M. Safaei, H. Maleki, H. Soleimanpour, A. Norouzy, H.S. Zahiri, H. Vali, K.A. Noghabi, Development of a novel method for the purification of C-phycocyanin pigment from a local cyanobacterial strain Limnothrix sp. NS01 and evaluation of its anticancer properties, Sci Rep 9(1) (2019) 9474.
[28] K.M. Minkova, A.A. Tchernov, M.I. Tchorbadjieva, S.T. Fournadjieva, R.E. Antova, M. Busheva, Purification of C-phycocyanin from Spirulina (Arthrospira) fusiformis, J Biotechnol 102(1) (2003) 55-9.
[29] M. Giannelli, A. Pini, L. Formigli, D. Bani, Comparative in vitro study among the effects of different laser and LED irradiation protocols and conventional chlorhexidine treatment for deactivation of bacterial lipopolysaccharide adherent to titanium surface, Photomed Laser Surg 29(8) (2011) 573-80.
- Abstract Viewed: 59 times
- PDF Downloaded: 162 times