Shear Bond Strength of Two Repair Systems to Zirconia Ceramic by Different Surface Treatments Zirconia repairing systems
Journal of Lasers in Medical Sciences,
Vol. 13 (2022),
10 January 2022
,
Page e31
Abstract
Introduction: Intraoral repair has been recommended as an option of treatment to repair the chipping or fracture of the veneered zirconia; the success of the procedure mainly determined by the adhesion between the composite resin and zirconia; The present study aimed to investigate the shear bond strength (SBS) of zirconia ceramic treated by a laser and air abrasion and repaired using different intraoral repair systems.
Methods: Ninety tube- shaped samples (diameter of 10 mm, and 4 mm height) were divided into three main groups: (1) Group I Zirconia 100%, (2) Group II veneer ceramic 100%, and (3) Group III zirconia 50% veneered with veneering ceramic 50%. Each main group was subdivided into three subgroups (n=10) according to the type of repair system and different surface treatments (no surface treatment, Er,Cr:YSGG laser surface treatment, and air abrasion surface treatment). The SBS was employed using a universal testing machine. The mode of failure was observed using a stereomicroscope.
Results: Significant differences in the mean SBS values between the different surface treatments (P˂ 0.05) were observed. Tukey’s post hoc test showed that air abrasion surface treatment of veneer ceramic repaired with Ceramic repair N system showed the highest mean value (13.74 MPa) among the different groups, while no surface treatment of zirconia repaired with Cimara repair system showed the lowest mean value (2.84 MPa). The control group (no surface treatment) had the lowest mean value among all the treated groups.
Conclusion: The SBS is surface treatment dependent, and a higher SBS is obtained by air abrasion than laser surface treatments. The Ceramic repair N system had a significantly higher SBS in all surface- treated substrates than in the Cimara repair system.
- Laser; Shear bond; Surface treatment; Veneer ceramic; Zirconia
How to Cite
References
2. Miyazaki T, Nakamura T, Matsumura H, Ban S, Kobayashi T. Current status of zirconia restoration. J Prosthodont Res. 2013;57(4):236–61.
3. Zhang Y, Lawn BR. Novel zirconia materials in dentistry. J Dent Res. 2018;97(2):140–7.
4. Shahmiri R, Standard OC, Hart JN, Sorrell CC. Optical properties of zirconia ceramics for esthetic dental restorations: A systematic review. J Prosthet Dent. 2018;119 (1):36–46. https: //doi.org/ 10.1016/j. prosdent. 2017. 07. 009
5. Lee J-H, Kim S-H, Han J-S, Yeo I-SL, Yoon H-I. Optical and surface properties of monolithic zirconia after simulated toothbrushing. Materials. 2019;12(7):1158. https://doi.org/10.3390/ma12071158
6. Cevik P, Cengiz D, Malkoc MA. Bond strength of veneering porcelain to zirconia after different surface treatments. J Adhes Sci Technol.2016;30(22):2466–76. https://doi.org/10.1080/01694243.2016.1184779
7. Rodríguez V, Tobar C, López-Suárez C, Peláez J, Suárez MJ. Fracture Load of Metal, Zirconia and Polyetheretherketone Posterior CAD-CAM Milled Fixed Partial Denture Frameworks. Materials. 2021;14(4):959. https://doi.org/10.3390/ma14040959
8. Agingu C, Zhang C, Jiang N, Cheng H, Özcan M, Yu H. Intraoral repair of chipped or fractured veneered zirconia crowns and fixed dental prosthesis: clinical guidelines based on literature review. J Adhes SciTechnol.2018;32(15):1711–23. https://doi.org/10.1080/01694243.2018.1443639
9. Belli R, Wendler M, de Ligny D, Cicconi MR, Petschelt A, Peterlik H, et al. Chairside CAD/CAM materials. Part 1: Measurement of elastic constants and microstructural characterization. Dent Mater. 2017;33(1):84–98. https://doi.org/10.1016/j.dental.2016.10.009
10. Özcan, Mutlu. "Intraoral repair protocol for chipping or fracture of veneering ceramic in zirconia fixed dental prostheses." J Adhesive Dent. 17, no. 2 (2015): 189-190.
11. Ahmadzadeh A, Ghasemi Z, Panahandeh N, Golmohammadi F, Kavyani A. Effect of silane on shear bond strength of two porcelain repair systems. 2016;9-18.
12. Aboushelib MN, Matinlinna JP, Salameh Z, Ounsi H. Innovations in bonding to zirconia-based materials: Part I. Dent Mater. 2008;24(9):1268–72. https://doi.org/10.1016/j.dental.2008.02.010
13. Lung CYK, Matinlinna JP. Aspects of silane coupling agents and surface conditioning in dentistry: an overview. Dent Mater. 2012;28(5):467–77. https://doi.org/10.1016/j.dental.2012.02.009
14. Alex G. CE 1-Preparing Porcelain Surfaces for Optimal Bonding. Compendium. 2008;29(6):324.
15. Lundberg K, Wu L, Papia E. The effect of grinding and/or airborne-particle abrasion on the bond strength between zirconia and veneering porcelain: a systematic review. Acta Biomater Odontol Scand [Internet]. 2017;3(1):8–20. https://doi.org/10.1080/23337931.2017.1293486
16. Sharafeddin F, Shoale S. Effects of universal and conventional MDP primers on the shear bond strength of zirconia ceramic and nanofilled composite resin. J Dent. 2018;19(1):48.
17. Convissar RA, Goldstein EE. A combined carbon dioxide/erbium laser for soft and hard tissue procedures. Dent Today. 2001;20(1):66–71.
18. Casucci A, Mazzitelli C, Monticelli F, Toledano M, Osorio R, Osorio E, et al. Morphological analysis of three zirconium oxide ceramics: Effect of surface treatments. Dent Mater. 2010; 26 (8):751–60. https:// doi.org/ 10.1016/j.dental.2010.03.020
19. Akyıl MŞ, Uzun İH, Bayındır F. Bond strength of resin cement to yttrium-stabilized tetragonal zirconia ceramic treated with air abrasion, silica coating, and laser irradiation. Photomed Laser Surg. 2010;28(6):801–8. https://doi.org/10.1089/pho.2009.2697
20. Akın H, Ozkurt Z, Kırmalı O, Kazazoglu E, Ozdemir AK. Shear bond strength of resin cement to zirconia ceramic after aluminum oxide sandblasting and various laser treatments. Photomed Laser Surg. 2011;29(12):797–802. https://doi.org/10.1089/pho.2011.3039
21. Paranhos MPG, Burnett Jr LH, Magne P. Effect of Nd: YAG laser and CO 2 laser treatment on the resin bond strength to zirconia ceramic. Quintessence Int . 2011;42(1).
22. Çinar S, Kirmali Ö. Repair bond strength of composite resin to zirconia restorations after different thermal cycles. J Adv Prosthodont. 2019;11(5):297–304. https://doi.org/10.4047/jap.2019.11.5.297
23. Yesil ZD, Karaoglanoglu S, Akyıl MS, Seven N. Evaluation of the bond strength of different bonding agents to porcelain and metal alloy. IntJAdhesAdhes.2009;29(1):32–5. https://doi.org/10.1016/j.ijadhadh.2007.10.006
24. Lunt A, Salvati E, Baimpas N, Dolbnya I, Neo TK, Korsunsky AM. Investigations into the interface failure of yttria partially stabilised zirconia-porcelain dental prostheses through microscale residual stress and phase quantification. Dent Mater. 2019; 35(11):1576–93. https:// doi.org/10.1016/ j.dental.2019.08.098
25. Fazi G, Vichi A, Ferrari M. Microtensile bond strength of three different veneering porcelain systems to a zirconia core for all ceramic restorations. Am J Dent. 2010;23(6):347–50.
26. Göstemeyer G, Jendras M, Borchers L, Bach F-W, Stiesch M, Kohorst P. Effect of thermal expansion mismatch on the Y-TZP/veneer interfacial adhesion determined by strain energy release rate. J ProsthodontRes.2012;56(2):93–101. https://doi.org/10.1016/j.jpor.2011.09.002
27. Chintapalli RK, Marro FG, Jimenez-Pique E, Anglada M. Phase transformation and subsurface damage in 3Y-TZP after sandblasting. DentMater.2013;29(5):566–72. https://doi.org/10.1016/j.dental.2013.03.005
28. Tashkandi E. Effect of surface treatment on the micro-shear bond strength to zirconia.SaudiDentJ.2009;21(3):113–6. https://doi.org/10.1016/j.sdentj.2009.10.002
29. Jamel RS, Nayif MM, Abdulla MA. Influence of different surface treatments of nickel chrome metal alloy and types of metal primer monomers on the tensile bond strength of a resin cement. Saudi Dent J. 2019; 31,343-349. https://doi.org/10.1016/j.sdentj.2019.03.006
30. Yenisey M, Dede DÖ, Rona N. Effect of surface treatments on the bond strength between resin cement and differently sintered zirconium-oxide ceramics. J Prosthodont Res. 2016; 60(1):36–46. https:// doi.org/10.1016/ j.jpor.2015.09.001
31. Zhang Y, Lawn BR, Rekow ED, Thompson VP. Effect of sandblasting on the long‐term performance of dental ceramics. J Biomed Mater Res Part B Appl Biomater An Off J Soc Biomater Japanese Soc Biomater Aust Soc Biomater Korean Soc Biomater. 2004; 71(2):381–6. https:// doi.org/10.1002/ jbm.b.30097
32. Liu D, Matinlinna JP, Tsoi JK-H, Pow EHN, Miyazaki T, Shibata Y, et al. A new modified laser pretreatment for porcelain zirconia bonding.DentMater.2013;29(5):559–65. https://doi.org/10.1016/j.dental.2013.03.002
33. Liu L, Liu S, Song X, Zhu Q, Zhang W. Effect of Nd: YAG laser irradiation on surface properties and bond strength of zirconia ceramics. Lasers Med Sci. 2015;30(2):627–34.
34. Cavalcanti AN, Pilecki P, Foxton RM, Watson TF, Oliveira MT, Gianinni M, et al. Evaluation of the surface roughness and morphologic features of Y-TZP ceramics after different surface treatments. Photomed Laser Surg. 2009;27(3):473–9. https://doi.org/10.1089/pho.2008.2293
35. Siddiqui AA, Dubey AK. Laser Surface Treatment. Eng Steels High Entropy-Alloys. 2020;239.
36. Qeblawi DM, Muñoz CA, Brewer JD, Monaco Jr EA. The effect of zirconia surface treatment on flexural strength and shear bond strength to a resin cement. J Prosthet Dent. 2010; 103(4):210–20. https:// doi.org/ 10.1016/s0022-3913(10)60033-9
37. Matinlinna JP, Lassila LVJ, Özcan M, Yli-Urpo A, Vallittu PK. An introduction to silanes and their clinical applications in dentistry. Int J Prosthodont. 2004;17(2).
38. Griffin J, Suh B, Chen L, Brown DJ. Surface treatments for zirconia bonding: A clinical perspective. Can J Restor Dent Prosthodont. 2010;3(1):23–9.
39. Alex G. Preparing porcelain surfaces for optimal bonding. Compend Contin Educ Dent. 2008;29(6):2–14.
40. Yang L, Chen B, Xie H, Chen Y, Chen Y, Chen C. Durability of resin bonding to zirconia using products containing 10-methacryloyloxydecyl dihydrogen phosphate. J Adhes Dent. 2018;20(4):279–87.
41. Yagawa S, Komine F, Fushiki R, Kubochi K, Kimura F, Matsumura H. Effect of priming agents on shear bond strengths of resin-based luting agents to a translucent zirconia material. J ProsthodontRes.2018;62(2):204–9. https://doi.org/10.1016/j.jpor.2017.08.011
42. Matinlinna JP, Lassila LVJ, Vallittu PK. Evaluation of five dental silanes on bonding a luting cement onto silica-coated titanium. J Dent. 2006;34(9):721–6. https://doi.org/10.1016/j.jdent.2006.01.005
43. de Solventes CA. Adhesive systems: Considerations about solvents. Int J Odontostomat. 2009;3(2):119–24.
44. Curtis AR, Shortall AC, Marquis PM, Palin WM. Water uptake and strength characteristics of a nanofilled resin-based composite. J Dent. 2008;36(3):186–93. https://doi.org/10.1016/j.jdent.2007.11.015
- Abstract Viewed: 458 times
- PDF Downloaded: 319 times