Antimicrobial Photodynamic Therapy as a Technique for Decontamination of Acrylic Resin Devices Provided by Different Dental Laboratories Antimicrobial PT for Decontamination of Acrylic Resin Devices
Journal of Lasers in Medical Sciences,
Vol. 14 (2023),
29 January 2023
,
Page e8
Abstract
Introduction: Dentures, occlusal splints, surgical guides and orthodontic appliances are examples of acrylic resin devices made in dental laboratories, which must be disinfected and even sterilized before insertion into the oral cavity. This study evaluated the antimicrobial effect of photodynamic therapy (PDT) applied to acrylic resin specimens received from different laboratories.
Methods: Three hundred standardized specimens were ordered from six randomly selected laboratories registered in the Council of Dentistry of Ceará (n=50). The PDT consisted in the association of 22 µM erythrosine, as a photosensitizer (P), and a 520-nm LED at 38 J/cm2 (L). The specimens of each laboratory were randomly distributed into five groups: positive control, sterilized with ethylene oxide; negative control, untreated (P-L-); erythrosine control, only stained (P+L-); LED control, only irradiated (P-L+); PDT (P+L+). Then, the specimens were individually sonicated in saline solution; the suspension was diluted, plated on culture mediums (blood agar, sabouraud dextrose agar, and a non-selective chromogenic agar), and incubated for 48 hours at 37°C. Colonyforming-unit (CFU) counts were done and statistical tests of Kruskal-Wallis/Dunn were carried out.
Results: The specimens from all laboratories were contaminated with bacteria and yeasts. Staphylococcus aureus, Staphylococcus saprophyticus, Escherichia coli, Enterococcus spp., Klebsiella, and Pseudomonas spp. were identified. The PDT significantly reduced CFU counts (P<0.0001), compared to P-L-.
Conclusion: PDT was able to effectively decontaminate the acrylic resin specimens provided by dental laboratories.
- Acrylic resins; Photochemotherapy; Contamination; Disinfection; Sterilization
How to Cite
References
1. Dong S, Shi H, Zhang X, Chen X, Cao D, Mao C, et al. Difunctional bacteriophage conjugated with photosensitizers for Candida albicans-targeting photodynamic inactivation. Int J Nanomedicine. 2018;13:2199-216. doi: 10.2147/ijn. s156815.
2. Tan J, Liu Z, Sun Y, Yang L, Gao L. Inhibitory effects of photodynamic inactivation on planktonic cells and biofilms of Candida auris. Mycopathologia. 2019;184(4):525-31. doi: 10.1007/s11046-019-00352-9.
3. Dovigo LN. Efetividade da terapia fotodinâmica na inativação de Candida spp [dissertation]. Universidade Estadual Paulista, Faculdade de Odontologia de Araraquara; 2007. https:// repositorio.unesp.br/handle/11449/97303.
4. Pinto AP, Rosseti IB, Carvalho ML, da Silva BGM, AlbertoSilva C, Costa MS. Photodynamic antimicrobial chemotherapy (PACT), using toluidine blue O inhibits the viability of biofilm produced by Candida albicans at different stages of development. Photodiagnosis Photodyn Ther. 2018; 21:182- 9. doi: 10.1016/j.pdpdt.2017.12.001.
5. Chambrone L, Wang HL, Romanos GE. Antimicrobial photodynamic therapy for the treatment of periodontitis and peri-implantitis: An American Academy of Periodontology best evidence review. J Periodontol. 2018;89(7):783-803. doi: 10.1902/jop.2017.170172.
6. Fumes AC, da Silva Telles PD, Corona SAM, Borsatto MC. Effect of aPDT on Streptococcus mutans and Candida albicans present in the dental biofilm: systematic review. Photodiagnosis Photodyn Ther. 2018;21:363-6. doi: 10.1016/j.pdpdt.2018.01.013.
7. Plotino G, Grande NM, Mercade M. Photodynamic therapy in endodontics. Int Endod J. 2019;52(6):760-74. doi: 10.1111/ iej.13057.
8. Kugel G, Perry RD, Ferrari M, Lalicata P. Disinfection and communication practices: a survey of U.S. dental laboratories. J Am Dent Assoc. 2000;131(6):786-92. doi: 10.14219/jada. archive.2000.0278.
9. Wood S, Metcalf D, Devine D, Robinson C. Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms. J Antimicrob Chemother. 2006;57(4):680-4. doi: 10.1093/jac/dkl021.
10. Hu X, Huang YY, Wang Y, Wang X, Hamblin MR. Antimicrobial photodynamic therapy to control clinically relevant biofilm infections. Front Microbiol. 2018;9:1299. doi: 10.3389/fmicb.2018.01299.
11. de Carvalho Leonel L, Carvalho ML, da Silva BM, Zamuner S, Alberto-Silva C, Silva Costa M. Photodynamic antimicrobial chemotherapy (PACT) using methylene blue inhibits the viability of the biofilm produced by Candida albicans. Photodiagnosis Photodyn Ther. 2019;26:316-23. doi: 10.1016/j.pdpdt.2019.04.026.
12. Seo RS, Vergani CE, Pavarina AC, Compagnoni MA, Machado AL. Influence of microwave disinfection on the dimensional stability of intact and relined acrylic resin denture bases. J Prosthet Dent. 2007;98(3):216-23. doi: 10.1016/s0022- 3913(07)60058-4.
13. de Oliveira Mima EG, Pavarina AC, Ribeiro DG, Dovigo LN, Vergani CE, Bagnato VS. Effectiveness of photodynamic therapy for the inactivation of Candida spp. on dentures: in vitro study. Photomed Laser Surg. 2011;29(12):827-33. doi: 10.1089/pho.2011.3022.
14. Verran J, Kossar S, McCord JF. Microbiological study of selected risk areas in dental technology laboratories. J Dent. 1996;24(1-2):77-80. doi: 10.1016/0300-5712(95)00052-6.
15. Witt S, Hart P. Cross-infection hazards associated with the use of pumice in dental laboratories. J Dent. 1990;18(5):281-3. doi: 10.1016/0300-5712(90)90030-i.
16. Sofou A, Larsen T, Fiehn NE, Owall B. Contamination level of alginate impressions arriving at a dental laboratory. Clin Oral Investig. 2002;6(3):161-5. doi: 10.1007/s00784-002-0173-4.
17. Akeredolu PA, Sofola OO, Jokomba O. Assessment of knowledge and practice of cross--Infection control among Nigerian dental technologists. Niger Postgrad Med J. 2006;13(3):167-71.
18. da Silva MC, Cartaxo JUQ, Arioli Filho JN, Batista AUL. [Evaluation of the biosecurity measures adopted in dental prosthesis laboratories of the city of João Pessoa, PB, Brazil]. Pesqui Bras Odontopediatria Clin Integr. 2010;10(1):101-6. doi: 10.4034/1519.0501.2010.0101.0017.
19. Al-Omari MA, Al-Dwairi ZN. Compliance with infection control programs in private dental clinics in Jordan. J Dent Educ. 2005;69(6):693-8.
20. Pavarina AC, Machado AL, Giampaolo ET, Vergani CE. [Cross-contamination between the operatory and the dental laboratory via contaminated prostheses]. Rev Bras Prót Clin Lab. 1999;1(1):74-8.
21. Cotrim LE, dos Santos EM, Jorge AO. [Bio-security procedures accomplished by surgeon-dentists and laboratories during dental making prosthesis]. Rev Odontol UNESP. 2013;30(2):233-44.
22. Demidova TN, Hamblin MR. Effect of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrob Agents Chemother. 2005;49(6):2329-35. doi: 10.1128/aac.49.6.2329-2335.2005.
23. Metcalf D, Robinson C, Devine D, Wood S. Enhancement of erythrosine-mediated photodynamic therapy of Streptococcus mutans biofilms by light fractionation. J Antimicrob Chemother. 2006;58(1):190-2. doi: 10.1093/jac/dkl205.
24. Rolim JP, de-Melo MA, Guedes SF, Albuquerque-Filho FB, de Souza JR, Nogueira NA, et al. The antimicrobial activity of photodynamic therapy against Streptococcus mutans using different photosensitizers. J Photochem Photobiol B. 2012;106:40-6. doi: 10.1016/j.jphotobiol.2011.10.001.
25. Peloi LS, Soares RR, Biondo CE, Souza VR, Hioka N, Kimura E. Photodynamic effect of light-emitting diode light on cell growth inhibition induced by methylene blue. J Biosci. 2008;33(2):231-7. doi: 10.1007/s12038-008-0040-9.
26. Soares BM, da Silva DL, Sousa GR, Amorim JC, de Resende MA, Pinotti M, et al. In vitro photodynamic inactivation of Candida spp. growth and adhesion to buccal epithelial cells. J Photochem Photobiol B. 2009;94(1):65-70. doi: 10.1016/j. jphotobiol.2008.07.013.
26. Zanin IC, Lobo MM, Rodrigues LK, Pimenta LA, Höfling JF, Gonçalves RB. Photosensitization of in vitro biofilms by toluidine blue O combined with a light-emitting diode. Eur J Oral Sci. 2006;114(1):64-9. doi: 10.1111/j.1600- 0722.2006.00263.x.
28. Maclean M, MacGregor SJ, Anderson JG, Woolsey G. Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Appl Environ Microbiol. 2009;75(7):1932-7. doi: 10.1128/ aem.01892-08.
29. Costa AC, de Campos Rasteiro VM, Pereira CA, da Silva Hashimoto ES, Beltrame M Jr, Junqueira JC, et al. Susceptibility of Candida albicans and Candida dubliniensis to erythrosine- and LED-mediated photodynamic therapy. Arch Oral Biol. 2011;56(11):1299-305. doi: 10.1016/j. archoralbio.2011.05.013.
30. Wainwright M. Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother. 1998;42(1):13-28. doi: 10.1093/jac/42.1.13.
- Abstract Viewed: 436 times
- PDF Downloaded: 500 times