Assessment of the Microbiome Role in Skin Protection Against UV Irradiation Via Network Analysis
Journal of Lasers in Medical Sciences,
Vol. 11 No. 3 (2020),
21 June 2020
,
Page 238-242
Abstract
Introduction: Diverse microbiotas which have some contributions to gene expression reside in human skin. To identify the protective role of the skin microbiome against UV exposure, protein-protein interaction (PPI) network analysis is used to assess gene expression alteration.
Methods: A microarray dataset, GEO accession number GSE117359, was considered in this respect. Differentially expressed genes (DEGs) in the germ-free (GF) and specific pathogen-free (SPF) groups are analyzed by GEO2R. The top significant DEGs were assigned for network analysis via Cytoscape 3.7.2 and its applications.
Results: A total of 28 genes were identified as significant DEGs and the centrality analysis of the network indicated that only one of the seven hub-bottlenecks was from queried genes. The gene ontology analysis of Il6, Cxcl2, Cxcl1, TNF, Il10, Cxcl10, and Mmp9 showed that the crucial genes were highly enriched in the immune system.
Conclusion: The skin microbiome plays a significant role in the protection of the skin against UV irradiation and the role of TNF and IL6 is prominent in this regard.
- Microbiome
- UV radiation
- Gene expression
- Protein-protein interaction network
How to Cite
References
Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9(4):244-53. doi: 10.1038/nrmicro2537.
Patra V, Wagner K, Arulampalam V, Wolf P. Skin microbiome modulates the effect of ultraviolet radiation on cellular response and immune function. iScience. 2019;15:211-22. doi: 10.1016/j.isci.2019.04.026.
Bay L, Barnes CJ, Fritz BG, Thorsen J, Restrup MEM, Rasmussen L, et al. Universal dermal microbiome in human skin. mBio. 2020;11(1):e02945-19. doi: 10.1128/mBio.02945-19.
Lunjani N, Hlela C, O’Mahony L. Microbiome and skin biology. Curr Opin Allergy Clin Immunol. 2019;19(4):328-33. doi: 10.1097/ACI.0000000000000542.
Ubags ND, Trompette A, Nibbering B, Pernot J, Pattaroni C, Rapin A, et al. The skin microbiome drives immune maturation and exacerbation of both skin and airway inflammation. ERJ Open Res. 2019;5. doi: 10.1183/23120541.lungscienceconference-2019.PP228
Mohania D, Chandel S, Kumar P, Verma V, Digvijay K, Tripathi D, et al. Ultraviolet radiations: skin defense-damage mechanism. In: Ahmad SI, editor. Ultraviolet Light in Human Health, Diseases and Environment. Cham, Switzerland: Springer; 2017. p. 71-87. doi: 10.1007/978-3-319-56017-5_7.
Diffey BL. Sources and measurement of ultraviolet radiation. Methods. 2002;28(1):4-13. doi: 10.1016/s1046-2023(02)00204-9.
Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, et al. UV-induced skin damage. Toxicology. 2003;189(1-2):21-39. doi: 10.1016/s0300-483x(03)00150-1.
Sies H, Stahl W. Nutritional protection against skin damage from sunlight. Annu Rev Nutr. 2004;24:173-200. doi: 10.1146/annurev.nutr.24.012003.132320.
Stahl W, Sies H. Carotenoids and flavonoids contribute to nutritional protection against skin damage from sunlight. Mol Biotechnol. 2007;37(1):26-30. doi: 10.1007/s12033-007-0051-z.
Patra V, Byrne SN, Wolf P. The skin microbiome: is it affected by UV-induced immune suppression? Front Microbiolog. 2016;7:1235. doi: 10.3389/fmicb.2016.01235.
Zali MR, Zamanian Azodi M, Razzaghi Z, Heydari MH. Gallbladder cancer integrated bioinformatics analysis of protein profile data. Gastroenterol Hepatol Bed Bench. 2019;12(Suppl 1):S66-S73.
Rezaei-Tavirani M, Rezaei Tavirani M, Zamanian Azodi M, Moravvej Farshi H, Razzaghi M. Evaluation of skin response after erbium: yttrium–aluminum–garnet laser irradiation: a network analysis approach. J Lasers Med Sci. 2019;10(3):194-99. doi: 10.15171/jlms.2019.31.
Rostami-Nejad M, Rezaei-Tavirani M, Zadeh-Esmaeel MM, RezaeiTavirani S, Akbari Z, Esmaeili S, et al. Assessment of cytokine-mediated signaling pathway dysregulation in arm skin after CO2 laser therapy. J Lasers Med Sci. 2019;10(4):257-63. doi: 10.15171/jlms.2019.42.
Khalkhal E, Razzaghi M, Rostami-Nejad M, Rezaei-Tavirani M, Heidari Beigvand H, Rezaei Tavirani M. Evaluation of laser effects on the human body after laser therapy. J Lasers Med Sci. 2020;11(1):91-7. doi: 10.15171/jlms.2020.15.
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-504. doi: 10.1101/gr.1239303.
Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape StringApp: network analysis and visualization of proteomics data. J Proteome Res. 2018;18(2):623-32. doi: 10.1021/acs.jproteome.8b00702.
Rezaei Tavirani M, Zamanian Azodi M, Rostami-Nejad M, Morravej H, Razzaghi Z, Okhovatian F, et al. Introducing Serine as cardiovascular disease biomarker candidate via pathway analysis. Galen. 2020;9:e1696. doi:10.31661/gmj.v9i0.1696.
Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091-3. doi: 10.1093/bioinformatics/btp101.
Bindea G, Galon J, Mlecnik B. CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics. 2013;29(5):661-3. doi: 10.1093/bioinformatics/btt019.
Meisel JS, Sfyroera G, Bartow-McKenney C, Gimblet C, Bugayev J, Horwinski J, et al. Commensal microbiota modulate gene expression in the skin. Microbiome. 2018;6(1):20. doi: 10.1186/s40168-018-0404-9.
Boshagh MA, Foroutan P, Moloudi MR, Fakhari S, Malakouti P, Nikkhoo B, et al. ELR positive CXCL chemokines are highly expressed in an animal model of ulcerative colitis. J Inflamm Res. 2019;12:167-74. doi: 10.2147/JIR.S203714.
Bartram J, Chartier Y, Lee JV, Pond K, Surman-Lee S. Legionella and the prevention of legionellosis. Geneva: World Health Organization; 2007.
Maingat F, Viappiani S, Zhu Y, Vivithanaporn P, Ellestad KK, Holden J, et al. Regulation of lentivirus neurovirulence by lipopolysaccharide conditioning: suppression of CXCL10 in the brain by IL-10. J Immunol. 2010;184(3):1566-74. doi: 10.4049/jimmunol.0902575.
Demers M, Magnaldo T, St-Pierre Y. A novel function for galectin-7: promoting tumorigenesis by up-regulating MMP-9 gene expression. Cancer Res. 2005;65(12):5205-10. doi: 10.1158/0008-5472.CAN-05-0134
Kim Y, Remacle AG, Chernov AV, Liu H, Shubayev I, Lai C, et al. The MMP-9/TIMP-1 axis controls the status of differentiation and function of myelin-forming Schwann cells in nerve regeneration. PLoS One. 2012;7(3):e33664. doi: 10.1371/journal.pone.0033664.
Owens GK, Vernon SM, Madsen CS. Molecular regulation of smooth muscle cell differentiation. J Hypertens Suppl. 1996;14(5):S55-64.
Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19(1):683-765. doi: 10.1146/annurev.immunol.19.1.683.
Onishi RM, Gaffen SL. Interleukin‐17 and its target genes: mechanisms of interleukin‐17 function in disease. Immunology. 2010;129(3):311-21. doi: 10.1111/j.1365-2567.2009.03240.x.
Scott NA, Mann ER. Regulation of mononuclear phagocyte function by the microbiota at mucosal sites. Immunology. 2020;159(1):26-38. doi: 10.1111/imm.13155.
- Abstract Viewed: 662 times
- PDF Downloaded: 473 times