The Influence of Diode Laser Intensity Modulation on Photoacoustic Image Quality for Oral Soft Tissue Imaging Influence of Laser Intensity on PA Image Quality
Journal of Lasers in Medical Sciences,
Vol. 11 No. Supplement (2020),
30 December 2020
,
Page S92-S100
Abstract
Introduction: Imaging technologies have been developed to assist physicians and dentists in detecting various diseases. Photoacoustic imaging is a new technique that shows great applicability to soft tissues. This study aimed to investigate the effect of diode laser intensity modulation on the photoacoustic image quality.
Methods: The prototype of the PAI system in this study utilized a non-ionizing 532 nm continuous-wave diode laser illumination. Samples in this study were oral soft tissues of Sprague–Dawley rats fixed in 10% formalin solution. PA images were taken ex vivo by using the PAI system. The laser exposure for oral soft tissue imaging was set in various duty cycles. The samples were embedded in paraffin, and PA images were taken from the paraffin-embedded tissue blocks in a similar method by using duty cycles of 40%, 45%, 50%, 55%, 60% respectively to reveal the influence of the laser duty cycle on PA image quality.
Results: The oral soft tissue is clearly shown as a yellow to red area in PA images, whereas the non-biological material appears as a blue background. The color of the PA image is determined by the PA intensity. Hence, the PA intensity of oral soft tissue was generally higher than that of the non-biological material around it. The Kruskal–Wallis test followed by Mann–Whitney post-hoc analysis revealed significant differences (P < 0.05) in the quality of PA images produced by using a 16%–47% duty cycle of laser intensity modulation for direct imaging of oral soft tissue fixed in 10% formalin solution. The PA image quality of paraffin-embedded tissue was higher than that of direct oral soft-tissue images, but no significant differences in PA image quality were found between the groups.
Conclusion: The PAI system built in this study can image oral soft tissue...[Complete in Fulltext]
- Photoacoustic; Image quality; Laser; Modulation; Oral soft tissue
How to Cite
References
Widyaningrum R, Faisal A, Mitrayana M, Mudjosemedi M, Agustina D. Imejing diagnostik kanker oral: prinsip interpretasi pada radiograf dental, CT, CBCT, MRI, dan USG. Maj Kedokt Gigi Indones. 2018;4(1):1-14. Indonesian. doi: 10.22146/majkedgiind.22050.
Suryani IR, Villegas NS, Shujaat S, De Grauwe A, Azhari A, Sitam S, et al. Image quality assessment of pre-processed and post-processed digital panoramic radiographs in pediatric patients with mixed dentition. Imaging Sci Dent. 2018;48(4):261-268. doi: 10.5624/isd.2018.48.4.261.
Perez MGS, Bagan JV, Jimenez Y, Margaix M, Marzal C. Utility of imaging techniques in the diagnosis of oral cancer. J Craniomaxillofac Surg. 2015;43(9):1880-1894. doi: 10.1016/j.jcms.2015.07.037.
Widyaningrum R, Agustina D, Mudjosemedi M, Mitrayana. Photoacoustic for oral soft tissue imaging based on intensity modulated continuous-wave diode laser. Int J Adv Sci Eng Inf Technol. 2018;8(2):622-627. doi: 10.18517/ijaseit.8.2.2383.
Lin CY, Chen F, Hariri A, Chen CJ, Wilder-Smith P, Takesh T, et al. Photoacoustic imaging for noninvasive periodontal probing depth measurements. J Dent Res. 2018;97(1):23-30. doi: 10.1177/0022034517729820.
Moore C, Bai Y, Hariri A, Sanchez JB, Lin CY, Koka S, et al. Photoacoustic imaging for monitoring periodontal health: A first human study. Photoacoustics. 2018;12:67-74. doi: 10.1016/j.pacs.2018.10.005.
Zhang Y, Hong H, Cai W. Photoacoustic imaging. Cold Spring Harb Protoc. 2011;2011(9). doi: 10.1101/pdb.top065508.
Mallidi S, Luke GP, Emelianov S. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends Biotechnol. 2011;29(5):213-221. doi: 10.1016/j.tibtech.2011.01.006.
Valluru KS, Wilson KE, Willmann JK. Photoacoustic imaging in oncology: Translational preclinical and early clinical experience. Radiology. 2016;280(2):332-49. doi: 10.1148/radiol.16151414.
Hariri A, Fatima A, Mohammadian N, Bely N, Nasiriavanaki M. Towards low cost photoacoustic Microscopy system for evaluation of skin health. In: Imaging Spectrometry XXI. Vol 9976. ; 2016:1-7. doi: 10.1117/12.2238423.
Mehrmohammadi M, Yoon SJ, Yeager D, Emelianov SY. Photoacoustic imaging for cancer detection and staging. Curr Mol Imaging. 2013;2(1):89-105. doi: 10.2174/2211555211302010010.
Allen TJ, Beard PC. High power visible light emitting diodes as pulsed excitation sources for biomedical photoacoustics. Biomed Opt Express. 2016;7(4):1260-1270. doi: 10.1364/BOE.7.001260.
Hoshimiya T. Nondestructive evaluation of surface defects under dry/wet environment by the use of photoacoustic and photothermal electrochemical imaging. NDT E Int. 1999;32:133-137. doi: 10.1016/S0963-8695(98)00063-2.
Maslov K, Wang LV. Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser. J Biomed Opt. 2008;13(2):024006. doi: 10.1117/1.2904965.
Xia J, Yao J, Wang LV. Photoacoustic tomography: Principles and advances. Electromagn Waves (Camb) . 2014;147:1-22. doi: 10.2528/pier14032303.
Bageshwar D V, Pawar AS, Khanvilkar VV, Kadam VJ. Photoacoustic spectroscopy and its applications – A tutorial review. Eurasian J Anal Chem. 2010;5(2):187-203.
Soroushian B, Yang X. Measuring non-radiative relaxation time of fluorophores with biomedical applications by intensity-modulated laser-induced photoacoustic effect. Biomed Opt Express. 2011;2(10):2749-2760. doi: 10.1364/BOE.2.002749.
Beard P. Biomedical photoacoustic imaging. Interface Focus. 2011;1(4):602-631. doi: 10.1098/rsfs.2011.0028.
Kolkman RGM, Steenbergen W, van Leeuwen TG. In vivo photoacoustic imaging of blood vessels with a pulsed laser diode. Lasers Med Sci. 2006;21(3):134-139. doi: 10.1007/s10103-006-0384-z.
Gao F. Multi-Wave electromagnetic-acoustic sensing and imaging. Singapore: Springer Nature; 2017. doi: 10.1007/978-981-10-3716-0.
Petrie A, Sabin C. Medical Statistics at a Glance. 4td ed. Chichester, UK: Willey-Blackwell; 2020.
Kim J, Lee D, Jung U, Kim C. Photoacoustic imaging platforms for multimodal imaging. Ultrasonography. 2015;34(2):88-97. doi: 10.14366/usg.14062.
Elia A, Lugarà PM, Di Franco C, Spagnolo V. Photoacoustic techniques for trace gas sensing based on semiconductor laser sources. Sensors (Basel). 2009;9(12):9616-9628. doi: 10.3390/s91209616.
Liu W, Yao J. Photoacoustic microscopy: principles and biomedical applications. Biomed Eng Lett. 2018;8(2):203-213. doi: 10.1007/s13534-018-0067-2.
Ku G, Wang X, Xie X, Stoica G, Wang LV. Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography. Appl Opt. 2005;44(5):770-775. doi: 10.1364/ao.44.000770.
Lao Y, Xing D, Yang S, Xiang L. Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth. Phys Med Biol. 2008;53(15):4203-4212. doi: 10.1088/0031-9155/53/15/013.
Dogra VS, Chinni BK, Valluru KS, Moalem J, Giampoli EJ, Evans K, et al. Preliminary results of ex vivo multispectral photoacoustic imaging in the management of thyroid cancer. AJR Am J Roentgenol. 2014;202(6):W552-558. doi: 10.2214/AJR.13.11433.
Strohm EM, Berndl ESL, Kolios MC. High frequency label-free photoacoustic microscopy of single cells. Photoacoustics. 2013;1(3-4):49-53. doi: 10.1016/j.pacs.2013.08.003.
Silverman RH, Kong F, Chen YC, Lloyd HO, Kim HH, Cannata JM, et al. High-resolution photoacoustic imaging of ocular tissues. Ultrasound Med Biol. 2010;36(5):733-742. doi: 10.1016/j.ultrasmedbio.2010.02.006.
Cadar ME. Histological Fixation with Formalin under Microwave Irradiation. Bull Univ Agric Sci Vet Med Cluj Napoca. 2012;69(1-2):48-51.
Wang X, Fowlkes JB, Cannata JM, Hu C, Carson PL. Photoacoustic imaging with a commercial ultrasound system and a custom probe. Ultrasound Med Biol. 2011;37(3):484-492. doi: 10.1016/j.ultrasmedbio.2010.12.005.
Coluzzi DJ, Convissar RA. Laser Fundamentals. In: Convissar RA, editor. Principles and practice of laser dentistry. St. Louis, Missouri: Mosby Elsevier; 2011:12-26.
Yao J, Wang LV. Sensitivity of photoacoustic microscopy. Photoacoustics. 2014;2(2):87-101. doi: 10.1016/j.pacs.2014.04.002.
Shantiningsih RR, Diba SF, Andini AD. β-carotene gingival mucoadhesive patch to prevent panoramic radiography exposure’s effect on GCF. In: Nuringtyas TR, Hidayati L, Rafieiy M, editors. Proceedings of the 1st International Conference on Bioinformatics, Biotechnology, and Biomedical Engineering (BIOMIC 2018); 2018 Oct 19-20; Yogyakarta, Indonesia. New York: AIP conference proceedings; 2019. p. 0200241-0200244. doi: 10.1063/1.5098429
Yanuaryska RD. Comet assay assessment of DNA damage in buccal nucosa cells exposed to X-rays via panoramic radiography. J Dent Indones. 2018;25(1):53-57. doi: 10.14693/jdi.v25i1.1124.
Whaites E, Drage N. Essentials of Dental Radiography and Radiology. 5th ed. Edinburgh: Churchill Livingstone Elsevier; 2013.
Kim M, Kang J, Chang JH, Song TK, Yoo Y. Image quality improvement based on inter-frame motion compensation for photoacoustic imaging: a preliminary study. Proceedings of the 2013 Joint UFFC, EFTF and PFM Symposium; 2013 July 21-25; Prague, Czech Republic. Piscataway, NJ: IEEE; 2013. p. 1528-1531. doi: 10.1109/ULTSYM.2013.0388.
Sangha GS, Hale NJ, Goergen CJ. Adjustable photoacoustic tomography probe improves light delivery and image quality. Photoacoustics. 2018;12:6-13. doi: 10.1016/j.pacs.2018.08.002.
Wang Y, Maslov K, Zhang Y, Hu S, Yang L, Xia Y, et al. Fiber-laser-based photoacoustic microscopy and melanoma cell detection. J Biomed Opt. 2011;16(1):011014. doi :10.1117/1.3525643.
Zhang Y, Wang Y, Zhang C. Total variation based gradient descent algorithm for sparse-view photoacoustic image reconstruction. Ultrasonics. 2012;52(8):1046-1055. doi: 10.1016/j.ultras.2012.08.012.
Omidi P, Zafar M, Mozaffarzadeh M, Hariri A, Haung X, Orooji M, et al. A novel dictionary-based image reconstruction for photoacoustic computed tomography. Appl Sci (Basel). 2018;8(9):1570. doi: 10.3390/app8091570.
- Abstract Viewed: 485 times
- PDF Downloaded: 282 times